

LAVORO A CURA DI Dr. Geol.Filippo Segalini Dr. Geol. Davide Zucchi Dr.ssa Simona Contini

INDICE

1	Introduzione	5
2	Definizione della pericolosità sismica di base e degli eventi di riferimento	6
2.1	Zonazione sismogenetica	14
2.1	2.1.1 Le sorgenti sismogenetiche	1 4
2.2	Sismicità storica	15
3	Assetto aeologico e geomorfologico	
2 1	Tettonica e sedimentazione	18
5.1		10
3.2	Stratigrafia comunale	19
	3.2.1 Unita lettonica Cassio	19
	3.2.1.1 Arenana al Scablazza - SCB	19 19
	3.2.2 Unità Tettonica Groppallo	19 19
	3.2.2.1 Complesso di Pietra Parcellara - CPP	20
3	3.2.3 Unità Tettonica Bettola	20
	3.2.3.1 Flysch di Bettola -BET	20
	3.2.3.2 Formazione della Val Luretta - VLU	20
3	3.2.4 Unità Tettonica Guselli	20
	3.2.4.1 Argilliti dei Guselli - GUS	20
3	3.2.5 Unità Tettonica Farini	21
	3.2.5.1 Flysch di Farini d'Olmo - FAR	21
2 2	Assetta geomorfologica	21
3.5	3 1 Denositi continentali guaternari	21
	Dati apotocnici o apoficici	 วว
4 1		22
4.1	Indagini geognostiche pregresse	22
4.2	Indagini geognostiche eseguite per la presente microzonazione sismica	23
2	4.2.1 Prove sismiche MASW+HVSR	23
Z	1.2.2 Prove sismiche tipo HVSR	26
5 I	Modello del sottosuolo	27
6 1	Interpretazioni ed incertezze	28
7	Metodologie di elaborazione e risultati	28
7.1	Valutazione dei fattori di amplificazione (Il Livello)	28
8	Elaborati cartografici	30
8.1	Carta delle indagini	30
8.2	Carta geologico tecnica per la microzonazione sismica	30
8.3	Carta delle frequenze naturali dei terreni	33
8.4	Carta delle microzone omogenee in prospettiva sismica (livello 1)	34
5.4	3.4.1 Descrizione delle zone individuate	34
5	3.4.2 Schemi dei rapporti stratigrafici	37
8	3.4.3 Sezioni geologiche	48
8	3.4.4 Sezioni topografiche	49
8.5	Carta delle velocità delle onde di taglio S (Vs)	53
8.6	Carta di microzonazione sismica (livello 2)	55

8	.6.1	Carignone	55
8	.6.2	San Michele	56
8	.6.3	Case Malvisi	57
8	.6.4	Levei-Chiavarini	57
8	.6.5	La Costa	58
8	.6.6	Case d'Olza	59
8	.6.7	Rocchetta	60
8	.6.8	Morfasso capoluogo	61
8	.6.9	Cornolo	62
8	.6.10	Pedina	63
8	.6.11	Casali	65
8	.6.12	I Rabbini	67
8	.6.13	Rusteghini	68
8	.6.14	Teruzzi	69
8.7	C	ommenti finali e criticità	70
9 C	Confr	onto della distribuzione dei danni degli eventi passati	72
10	Bibl	liografia	73
11	Alle	gati	74
11.:	1 P	rove sismiche tipo Masw+HVSR	74
11.	2 P	rove sismiche tipo HVSR	89
11.	3 S	ezioni Geologiche	151
11.4	4 R	ilievi geomeccanici	165

ELENCO ELABORATI

- Carta delle indagini (scala 1:10.000)
- Carta geologico tecnica per la microzonazione sismica (scala 1:10.000)
- Carta delle frequenze naturali dei terreni (scala 1:10.000)
- Carta delle microzone omogenee in prospettiva sismica (MOPS Livello 1) (scala 1:5.000)
- Carta delle velocità delle onde di taglio S (Vs) (scala 1:10.000)
- Carta di microzonazione sismica (livello 2) (scala 1:5.000)

[Fx] - F.A. P.G.A [Fy] - F.A. Intensità spettrale 0.1s<T₀≤0.5s [Fz] - F.A. Intensità spettrale 0.5s<T₀≤1s

- Quadro di unione
- Relazione illustrativa

1 INTRODUZIONE

La presente relazione è redatta in conformità alle "Indicazioni per gli studi di micro zonazione sismica finanziati con OPCM 4007/2012 in Emilia-Romagna (DGR 1302/2012)" e costituisce report descrittivo dell'analisi di primo e secondo livello.

Il comune di Morfasso confina con i seguenti comuni: Bore, Bettola, Bardi, Farini d'Olmo, Gropparello, Lugagnano d'Arda, Vernasca.

Nell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274/2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", pubblicata sul Supplemento Ordinario n. 72 alla Gazzetta Ufficiale n. 105 dell'8 maggio 2003 il Comune di Morfasso viene classificato in **zona 3**. Ai sensi dell'allegato 4 alla Delibera dell'assemblea Legislativa (D.A.L.) della Regione Emilia Romagna n. 112/2007, il valore di accelerazione massima orizzontale di picco al suolo, cioè per T = 0, a_{refg} per il comune di Morfasso è pari a **0.143**g. La magnitudo massima (M_{wmax}) attesa nel comune (compreso all'interno delle zone sismogenetiche 911 e 913) e riportata negli ICMS (2008), è stimata pari 6,14.

Figura 1.1. Ubicazione confine comunale su base Carta tecnica semplificata

Il territorio comunale ha un'estensione di circa 84 kmq e si sviluppa tra la quote minima di circa 325 m slm della zona posta a nord est, in corrispondenza del Lago di Mignano e la quota massima di 1356 m slm nella zona del crinale. Il territorio comunale è attraversato da tre principali corsi d'acqua: il Torrente Arda, che si origina proprio all'interno del territorio comunale ed è affluente al Po, sbarrato dalla diga artificiale che da origine al Lago di Mignano; il torrente Lubiana suo affluente ed il torrente Chero che si origina anch'esso in comune di Morfasso affluente del Chiavenna.

Il comune interessa una serie di elementi alla scala 1:5.000 della Carta Tecnica Regionale il cui schema è riportato nella figura 1.2.

Figura 1.2. Limite comune ed elementi CTR alla scala 1:5.000

2 DEFINIZIONE DELLA PERICOLOSITÀ SISMICA DI BASE E DEGLI EVENTI DI RIFERIMENTO

Le esposizioni riportate di seguito sono tratte dalle Note alla "Carta sismotettonica della Regione Emilia Romagna" e dalle Note illustrative della Carta Geologica d'Italia alla scala 1:50.000 del Foglio 198 Bardi. Il territorio del comune di Morfasso (PC) è inserito nel contesto sismo-tettonico del settore Appenninico, precisamente nella "zona assiale". La zona assiale è la parte morfologicamente più elevata della catena esterna che costituisce l'edificio le cui strutturazioni principali arrivano fino al Pliocene inferiore, le cui unità tettoniche sono così distinte:

1.le unità Liguri e Subliguri con la soprastante Successione Epiligure (indicate in carta con il colore verde); 2.le unità oligo-mioceniche toscane e l'unità umbro-marchigiano-romagnola (indicate in carta con il colore marrone).

RELAZIONE ILLUSTRATIVA

Nell'area di catena le principali strutture attive individuate sono rappresentate da un sistema di faglie inverse che si sviluppa in prossimità del crinale appenninico, al limite meridionale della regione. Questo sistema ha determinato l'origine di numerose "finestre tettoniche" e strutture fuori sequenza che invertono i rapporti di sovrapposizione delle Liguridi sulle unità toscane con quest'ultime che in più punti si accavallano sulle prime. L'area di interesse è caratterizzata da un interessante allineamento tettonico, più o meno in corrispondenza del T.Arda, con un andamento nettamente trasversale alle direttrici appeniniche. E' materializzato d una lunga fascia di argille ofiolitifere che dal Groppo di Gora a sud, si prolunga verso NNE fino oltre al lago di Mignano, verso Lugagnano val d'Arda; queste "argille limitano verso ovest l'Unità Tettonica Bettola e verso est l'unità Tettonica Cassio. Poiché la prima rimane di norma ricoperta tettonicamente dalla seconda, è probabile che le unità affioranti sul versante sinistro della Val d'Arda risultino sollevate di almeno 300 metri rispetto a quelle del lato destro della valle, valore che si è ottenuto dal confronto altimetrico della base affiorante del Flysch del M.Cassio sui due fianchi vallivi.

Un altro allineamento importante per l'interpretazione delle strutture liguri più profonde dei flysch terziari è quello che sembra legare gli affioramenti del Flysch di Farini d'Olmo tra il M.Dosso, Morfasso e la Val Nure (Unità Tettonica Farini). Mentre in val Ceno è presente in affioramento solo l'estesissimo fianco rovescio della piega del flysch terziario, in Val Nure, a valle di Farini d'Olmo, la struttura sinclinalica padano-vergente si completa con il fianco normale, apparendo quindi sollevata rispetto a quella del Val Ceno. Il collegamento tra i due grandi affioramenti si dovrebe sviluppare al di sotto dei ricoprimenti liguri cretacei da M. Carameto fino a M.Obolo, nel territorio comunale di Morfasso.

Soft and main model of main main main main and profit and an additional and a soft and the soft

Thr.

10

Unità Liguri, Subliguri ed Epiliguri (Giurassico - Miccene, 205 - 6,8 Ma) Ligurian, Subligurian and Epilipurian Units (Jurassic - Miccene, 205 - 6,8 My)

> Figura 2.2. Estratto dalla "Carta Sismotettonica dell'Emilia Romagna" (2004) con indicazione del territorio comunale.

Il territorio comunale ricade nel Foglio 198 "Bardi" della Carta Geologica d'Italia alla scala 1:50.000. Nello schema tettonico allegato al Foglio 198 sono cartografati sovrascorrimenti e faglie interessanti il territorio comunale di Morfasso.

Figura 2.3. Schema tettonico del Foglio 198 della Carta Geologica d'Italia alla scala 1:50.000.

Per quanto concerne le faglie si riportano 7 faglie interessanti il territorio comunale censite nel progetto ITHACA ed i cui dati sono disponibili nel sito:

http://sgi.isprambiente.it/geoportal/catalog/content/project/ithaca.page

Di seguito si riportano le indicazioni relative alle faglie interessanti il territorio comunale estratte dal progetto Ithaca.

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	M.Menegosa
FAULT CODE	90543
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	25
DIP	
LENGTH (Km)	11
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	11
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	6.3
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	M.Zuccarello
FAULT CODE	90542
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	25
DIP	
LENGTH (Km)	10
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	10
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	6.2
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	M.Carameto
FAULT CODE	90545
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	135
DIP	
LENGTH (Km)	6
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	6
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	6.0
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	Vezzolacca
FAULT CODE	90546
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	110
DIP	
LENGTH (Km)	3
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	3
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	5.6
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	M.S.Franca
FAULT CODE	90544
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	160
DIP	
LENGTH (Km)	3
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	3
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	5.6
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	M.Croce dei Segni
FAULT CODE	90544
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	160
DIP	
LENGTH (Km)	2
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	2
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	5.4
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

GEOLOGIC SETTING	
SYNOPSIS	
FAULT NAME	M.Obolo
FAULT CODE	90548
MACROZONE	3
REGION NAME	Emilia Romagna
SYSTEM NAME	Appenninic Foothills
RANK	Subordinate
AVERAGE STRIKE	160
DIP	
LENGTH (Km)	1
GEOMETRY	
SEGMENTATION	no
DEPTH (Km)	0
LOCATION RELIABILITY	1:250000
LAST ACTIVITY	Early Pleistocene
ACTIVITY RELIABILITY	Low reliability
RECURRENCE INTERVAL (yr)	0
SLIP-RATE (mm/yr)	0
MAX CREDIBLE RUPTURE LENGTH	1
MAX CREDIBLE SLIP (m)	0
KNOWN SEISMIC EVENTS	
MAX CREDIBLE MAGNITUDE (Mw)	5.1
MAX CREDIBLE INTENSITY (INQUA scale)	
STUDY QUALITY	LOW
NOTES	

AUTHORS	TITLE	REFERENCES	YEAR
CERRINA FERONI A., MARTELLI L., MARTINELLI P., OTTRIA P.	Carta geologico strutturale dell'Appennino Emiliano Romagnolo alla scala 1:250000	Regione Emilia- Romagna - CNR	2002
REGIONE EMILIA-ROMAGNA, ENI-AGIP, a cura di DI DIO G. (1998)	Riserve idriche sotterranee della Regione Emilia- Romagna.	S.EL.CA., Firenze	1998
SERVA L. (1990)	Il ruolo delle Scienze della Terra nelle analisi di sicurezza di un sito per alcune tipologie di impianti industriali: il terremoto di riferimento per il sito di Viadana (MN).	Boll. Soc. Geol. lt., 109, 375-411	1990

2.1 Zonazione sismogenetica

La zonazione sismogenetica rappresenta la traduzione operativa del modello sismotettonico: in particolare la nuova zonazione sismogenetica ZS9 "Zonazione sismogenetica ZS9 – App.2 al Rapporto conclusivo" pubblicata sul sito <u>http://zonesismiche.mi.ingv.it/</u> (G.d L., 2004¹) è stata ottenuta partendo dalla zonizzazione ZS4 (Scandone e Stucchi, 1999), accorpando e modificando le zone sorgente rendendole più coerenti con le informazioni oggi disponibili. Il modello sismotettonico che ha guidato nel tracciamento delle aree di ZS4 è basato sia su un modello strutturale 3D della penisola, sia sulla distribuzione spaziale dei terremoti storici ed attuali, sia sul modello cinematico dell'area mediterranea. In particolare il territorio del comune di Morfasso, nella nuova zonazione ZS9, ricade prevalentemente nella zona sismogenetica **913** e limitatamente nella zona **911**.

Di seguito si riporta una breve descrizione relativa alle zone 911 e 913, estratta dal già citato Rapporto conclusivo ("Zonazione sismogenetica ZS9 – App.2 al Rapporto conclusivo", G.d L, 2004).

Tutto l'arco appenninico settentrionale è stato riorganizzato secondo cinque fasce parallele longitudinali alla catena.

L'arco è limitato, a Nord, da una zona (**911**, unione delle zone 25 e 26 di ZS4 opportunamente ristrette) che comprende il cosiddetto "Arco di Pavia" e le strutture ad esse relative. In realtà, si suppone che la funzione delle strutture comprese all'interno della **911** sia di "svincolo" cinematico del sistema supposto in migrazione (in accordo con quanto espresso, ad esempio, in Paracca et al.,1990).

Le zone sismogenetiche **913, 914** e **918** risultano dalla scomposizione della fascia che da Parma si estende fino all'Abruzzo. In questa fascia si verificano terremoti prevalentemente compressivi nella porzione nord-occidentale e probabilmente distensivi nella porzione più sud-orientale; si possono altresì avere meccanismi distensivi nella porzione più sud-orientale; si possono altresì meccanismi trascorrenti nelle zone di svincolo che dissecano la continuità longitudinale delle strutture. L'intera fascia è caratterizzata da terremoti storici che raramente hanno raggiunto valori molto elevati di magnitudo. Le profondità ipocentrali sono mediamente maggiori in questa fascia di quanto non siano nella fascia più esterna.

La zonazione (ZS9) indica anche una profondità dello strato sismogenetico, che risulta essere compreso tra 12 e 20 km per la zona sismogenetica 913 e 8-12 km per la zona 911.

Zona	Numero eventi Md>2.0	Numero eventi Md>2.5	Numero eventi Md>3.0	Magnitudo massima (Md)	Classe di profondità (Km)	Profondità efficace (Km)
911	126	91	18	4.1	8-12	8
913	767	362	100	4.8	12-20	13

La valutazione della magnitudo massima (M_{wmax}) per le zone sismogenetiche, riportata anche negli ICMS (2008), per zone 911 e 913 fornisce un valore di 6,14.

2.1.1 Le sorgenti sismogenetiche

Per la determinazione delle sorgenti sismogenetiche principali dell'area in esame si è fatto riferimento al "Database of Individual Seismogenic Sources" (DISS 3.1) disponibile nel sito <u>www.ingv.it</u>.

Il database rappresenta la sintesi di tutte le evidenze geologiche e storiche relative alla fagliazione sismogenetica, con apporti derivanti dai dati della sismicità strumentale, dalla geodinamica a larga scala e dai caratteri geomorfologici. Il settore sud-orientale del comune di Morfasso ricade internamente a una sorgente sismogenetica individuata denominata **ITCS027** "Bore – Montefeltro – Fabriano - Laga".

¹ Gruppo di Lavoro (2004): redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma

Nelle tabelle seguenti sono riportati i dati relativa alla sorgente estratti dal database .

🚯 DISS 3.1.1: Seismogenic Source ITCS027 - Bore-Montefeltro-Fabriano-Laga 🎾						
Source Info Sum	mary <u>Com</u>	menta	ary <u>References</u> <u>Pictures</u>			
	General information					
Code	ITCS027					
Name	Bore-Montefeltro-Fab	riano-	-Laga			
Compiled By	Burrato, P., and S. M	ariano				
Latest Update	24/09/2007					
		Pa	arametric information			
	Parameter	Qual.	. Evidence			
Min Depth (km)	12	OD	Based on structural geology and geodynamic constraints.			
Max Depth (km)	22	OD	Based on structural geology and geodynamic constraints.			
Strike (deg)	90 - 160	OD	Based on geological constraints and structural geology.			
Dip (deg)	20 - 55	OD	Based on geological constraints and structural geology.			
Rake (deg)	70 - 110	EJ	Inferred from geological data.			
Slip Rate (mm/y)	0.1 - 1	EJ	Unknown, values assumed from geodynamic constraints.			
Max Magnitude (Mw)	6.2	OD	Derived from maximum magnitude of associated individual source(s).			
Q-keys:	LD = Literature Data; OD = Original Data; ER = Empirical Relationship; AR = Analytical Relationship; EJ = Expert Judgement					

2.2 Sismicità storica

La sismicità storica è stata studiata a partire dai cataloghi dei terremoti disponibili, in particolare sono stati presi in considerazione i cataloghi presenti sul sito internet dell'Istituto Nazionale di Geofisica e Vulcanologia (<u>www.ingv.it</u>).

Sono stati consultati i seguenti cataloghi:

CFTI – catalogo dei forti terremoti (461 a.c. – 1997)

DBMI11 – database macrosismico italiano

NT4.1 – catalogo parametrico dei terremoti italiani al di sopra della soglia del danno

CPTI 04 – catalogo parametrico dei terremoti italiani (217a.c. – 2002)

ISIDe - Database parametrico e strumentale della sismicità italiana

Per un primo sguardo d'insieme della sismicità storica dell'area in esame è stato consultato il "*Catalogo Parametrico dei Terremoti Italiani*" (Gruppo di lavoro CPTI, 2004, INGV, Bologna), nel quale, per un intorno significativo dell'area in esame (un raggio di 50 Km con centro lat. 44.722 e long. 9.702 ovvero dal centro abitato di Morfasso) sono stati identificati 35 eventi significativi dei quali si riportano alcuni dati nella tabella successiva.

CATALOGO PARAMETRICO DEI TERREMOTI ITALIANI

CPTI04 - Risultato dell'interrogazione per parametri

Interrogazione effettuata sui seguenti parametri:

Area circolare con centro C (44.722, 9.702) e raggio 50 km con valore Io tra 5 e 11

	N Tr Anno Me Gi Or Mi Se	AE	Rt	Nр	Inx	IO TI	Lat	Lon	TL Maw	Daw T	W Mas	Das TS	Msp	Dep	Z89 1	TZ No	ft	Nnt 1	Nept
	59 DI 1276 7 28 18 30	Italia settent.	CFTI	10	55	60 M	45.08	9.55	A 5.11	0.12	4.71	0.18	4.91	0.17	911	G 1	19	516	59
	74 DI 1303 3 22 23	DADMA	DOM	1	55	55	45.052	9.693	A 4.63	0.13	4.00	0.20	4.25	0.19	911	G		517	74
	144 DI 1438 6 11 20	Parmense	CFTI	12	80	80	44.85	10.23	A 5.62	0.17	5.47	0.26	5.61	0.26	913	Ĝı	181	599	144
	241 DI 1545 6 9 15	BORGO VAL DI TARO	DOM	5	75	75	44.498	9.844	A 5.33	0.19	5.04	0.28	5.21	0.26	915	G 2	222	543	241
	511 DI 1738 11 5 30	PARMA	DOM	10	70	70	44.906	10.028	A 5.40	0.20	5.15	0.30	5.31	0.28	913	G		612	511
	740 DI 1818 12 9 18 52	LANCHIRANO	DOM	27	75	75	44.668	10.286	A 5.57	0.10	5.40	0.15	5.55	0.15	913	G		615	740
	302 DI 1834 7 4 35	ALTA LUNIGIANA	DOM	21	65	65	44.439	10.021	A 5.14	0.18	4.76	0.27	4.95	0.25	915	G 3	883	550	802
	806 CP 1835 4 20 3	PASSO CISA	POS85			65	44.417	9.833	5.03	0.33	4.60	0.49	4.80	0.45	915	G		551	806
	368 DI 1849 11 28 18 15	VAL DI TARO	DOM	6	65	65	44.485	9.73	A 5.03	0.33	4.60	0.49	4.80	0.45	915	G 3	896	553	868
	926 CP 1861 3 16 30	SESTA GODANO	POS85	10	60	60	44.333	9.6	4.83	0.26	4.30	0.39	4.53	0.36	916	G		536	926
i	124 DI 1886 10 15 2 20	COLLECCHIO	DOM	44	60	60	44.75	10.306	A 4.83	0.26	4.30	0.39	4.53	0.36	913	G		623	1124
1	379 DI 1903 7 27 3 46	LUNIGIANA	DOM	79	75	70	44.329	9,953	A 5.15	0.10	4.78	0.15	4.97	0.14	915	G		558	1379
1	45 CP 1906 11 10 17 55	COMPIANO	P0585			60	44.5	9,633	4.83	0.26	4.30	0.39	4.53	0.36	915	G		559	1445
1	523 CP 1910 1 23 1 50	PONTE DELL'OLIO	POS85	72	50	55	44.9	9.633	4.63	0.13	4.00	0.20	4.25	0.19	911	G		525	1523
i	717 DI 1921 5 7 6 15	PONTREMOLI	DOM	19	70	65	44.377	9.882	A 5.03	0.33	4.60	0.49	4.80	0.45	915	Ğ		565	1717
1	727 DI 1921 11 29 12 4	BORGO VAL DI TARO	DOM	10	50	50	44.376	9.987	A 4.81	0.14	4.27	0.21	4.50	0.19	915	G		566	1727
1	796 DI 1927 10 28 21 49	BEDONIA	DOM	51	60	60	44.52	9.59	A 5.13	0.07	4.75	0.11	4.94	0.10	915	G		568	1796
1	803 DI 1928 2 21 4 37	VARESE LIGURE	DOM	8	60	60	44.44	9.611	A 4.56	0.11	3.89	0.17	4.15	0.16	915	G		538	1803
1	893 DI 1928 / 20 19 53	BORGO VAL DI TARO	DOM	29	60	60	44.438	9.725	A 4.56	0.04	4.88	0.06	5.06	0.06	915	č		572	1893
1	931 CP 1937 9 17 12 19 5	PARMA OVEST	POS85			60	44.8	10.3	4.56	0.11	3.89	0.17	4.15	0.16	913	G		632	1931
1	954 CP 1940 1 24 23 32 16	CORNIGLIO	POS85			50	44.467	10.1	4.93	0.09	4.45	0.14	4.67	0.13	915	G		591	1954
1	960 CP 1940 5 1 9 36 5	NOCETO Valle dello Staffora	POS85 CETT	31	75	50	44.8	9 13	4.89	0.14	4.39	0.21	4.61	0.19	913	G	-09	634 527	1960
1	996 DI 1945 12 15 5 27	VARZI	DOM	12	60	55	44.831	9.117	A 4.78	0.11	4.23	0.16	4.46	0.15	911	G		528	1996
1	998 CP 1946 2 18 23	PIONE	POS85			60	44.6	9.6	4.83	0.26	4.30	0.39	4.53	0.36	915	G		574	1998
2	L31 CP 1959 1 26 5 35 40	S.MARIA TARO	P0585			55	44.5	9.5	4.63	0.13	4.00	0.20	4.25	0.19	915	G		576	2131
2	313 CP 1972 6 25 17 10 49	CALESTANO	POS85 POS85			60	44.6	10.2	4.66	0.21	4.04	0.31	4.29	0.29	913	G		642 ·	2313
2	362 DI 1975 11 16 13 4	BORGO VAL DI TARO	DOM	10	55	55	44.404	9.831	A 4.85	0.08	4.32	0.12	4.54	0.11	915	G		530	2362
2	37 DI 1983 11 9 16 29 52	Parmense	CFTI	836	70	65	44.765	10.27	A 5.10	0.18	0 4.99	0.06	5.16	0.05	913	G			2435
10	mero di record estratti. 3	5																	
N	numero d'ordine	-			(14)		Local	izzazione											
	tine di record (indice co esisten	a dati di basa)			(4-2)	Lat	enic	entrale.		latituc	line in g	radi e de	cimali						(A6)
II.	tipo di record (indica se esistori	lo dati di basej			(AZ)	Lon	cpic			longiti	ıdine ir	gradi e d	lecimal	li					(A6)
					(14)	ті				codice	di loca	lizzazione							(A1)
Anno	tempo origine.	anno			(14)					counce									(/ 12)
ivie		mese			(12)	Me	magr	itudo:		magni	tudo er	uivalente						(13	2)
GI		giorno			(12)	De	magi	intudo.		errore	associa	to alla st	ima di	Me				(13	,,))
Or		ora			(12)	Mm				magni	tudo m	acrosismi	ra	ivic				(13	-/
MI		minuto			(12)	Dm				orrora			ima di	Mm				().	,, ,,
Se		secondo			(12)	Tm				codice	di data	rminazio	nna ui no di N	Am				(12	-) 1)
						Mc				magni	tudo ct	rumontal		/1111				(^	±)
AE	denominazione dell'area dei ma	assimi effetti			(A20)	IVIS Dc				orrora		to alla ct	e ima di	Mc				(1:)))
Rt	codice bibliografico dell'elabora	ato di riferimento			(A6)	DS To				codice	di data	rminaria	nna di N	IVIS Ac				(14	-)
Np	numero dei punti di intensità				(14)	15				codice	ai aete	erminazio	ne ai N	/15				(A	1)
lmx	intensità massima (scala MCS)				(13)	ivia D-				magni	tuao m	eula pesa	ld					(1:	<i>)</i>
lo	intensità epicentrale (scala MC	S)			(13)	Da				errore	associa	ito alla st	iina di	IVIa				(14	-)
TI	codice di determinazione Io				(A1)	Nuch	ood!-	o di oa		mara d'-	- ممانه	i recerd	noloct	alaar		1		0	
Ncft (odice di aggancio: numero prog	ressivo dei record nel catalogo CF	TI 2		(13	init	codic	e di agga	ncio: nui	mero d'o	ruine di	ei record	nercat	alogo I	NI4.1	.1		(14	+)

Tabella 2.1. Estratto dal Catalogo Parametrico dei Terremoti italiani, terremoti con epicentro compreso in un raggio di 50Km dal centro abitato di Morfasso.

L'esame delle tabelle precedenti evidenzia come i terremoti registrati nell'intorno considerato (scala regionale) non abbiano mai superato un valore di Mw di 6.0.

In particolare solo tre eventi sono riportati con magnitudo maggiore di 5.5, di cui due con epicentro nel parmense, nel 1438 e nel 1818 e uno in quello dell' AltaLunigiana del 1834.

Di seguito si riportano gli eventi con epicentro situato entro i 30 km dal centro abitato di Morfasso (lat. 44.722 e long. 9.702) e Magnitudo > 3.0 reperiti nel data-base dell'*Italian Seismological Instrumental and Parametric Data-Base* (ISIDE).

Tempo Origine (UTC)	Latitudine	Longitudine	Profondità	Magnitudo	Fonte
2012-10-03 17:18:00.000	44.763	9.702	26.3	3.2	Sala Sismica
2012-10-03 14:41:28.000	44.750	9.631	32.2	4.5	Sala Sismica
2012-03-05 15:15:06.990	44.494	9.354	10.8	4.2	Bollettino
2012-01-27 15:34:21.830	44.520	10.038	68.8	3.1	Bollettino
2012-01-27 14:53:12.740	44.523	10.009	72.4	5.2	Bollettino
2011-10-20 12:28:35.510	44.541	9.405	7.0	3.0	Bollettino
2011-10-20 06:39:13.760	44.510	9.399	8.9	3.0	Bollettino
2011-10-20 06:16:44.690	44.501	9.413	9.9	3.4	Bollettino
2011-10-20 06:11:18.860	44.521	9.393	5.1	4.0	Bollettino
2011-10-20 06:10:51.770	44.528	9.416	7.9	3.7	Bollettino
2011-10-20 06:09:22.240	44.527	9.410	9.0	3.1	Bollettino
2011-10-18 01:46:45.600	44.524	9.425	10.6	3.0	Bollettino
2011-10-09 12:23:17.410	44.720	9.999	22.4	3.1	Bollettino
2011-10-06 17:11:46.400	44.575	9.374	5.4	3.1	Bollettino
2011-06-12 17:55:27.010	44.523	9.411	7.0	3.0	Bollettino
2011-06-12 02:50:22.810	44.512	9.392	7.1	3.2	Bollettino
2011-04-28 20:14:38.800	44.631	10.004	24.7	3.0	Bollettino
2009-10-19 10:08:49.640	44.814	9.772	23.6	4.0	Bollettino
2009-07-28 15:48:09.870	44.685	9.345	1.6	3.1	Bollettino
2009-06-03 01:16:40.540	44.629	9.410	2.1	3.1	Bollettino
2012-10-03 17:18:00.000	44.640	9.982	18.3	3.2	Bollettino
2008-04-03 05:07:29.830	44.898	10.003	20.5	4.1	
2007-07-30 19:05:43.080	44.485	10.053	8.2	3.0	
2007-06-22 20:50:56.570	44.831	9.385	9.7	3.1	
2006-04-22 05:02:47.270	44.769	9.687	25.6	3.5	
2005-04-19 08:27:39.880	44.770	9.724	25.2	3.8	
2005-04-19 07:42:01.250	44.724	9.348	7.8	3.7	
2005-04-18 10:59:18.560	44.763	9.702	26.3	3.2	

Nel catalogo DBMI11 a cura di Locati et al. 2011 viene riportata la storia sismica nota del comune di Morfasso da cui si estrae quanto segue:

INGV - DBMI11 - Morfasso

Storia sismica di Morfasso [44.722, 9.702]

Numero di eventi: 7

Effetti					In	occasione del terremot	o del	:	
I[MCS]	Data					Ax	Np	Io Mw	
NF	1906	11	10	17:55		Appennino ligure	49	5-6 4.44 ±0).28
2-3	1928	02	21	04:37		VARESE LIGURE	8	54.39±0).25
6-7	1980	12	23	12:01		Piacentino	38	6-7 4.60 ±0).09
5	1983	11	09	16:29		Parmense	850	6-7 5.06 ±0).09
NF	1986	12	06	17:07		BONDENO	604	6 4.61 ±0).10
NF	2005	04	13	18:46		Valle del Trebbia	165	54.05±0).18
4	2005	04	18	10:59		Valle del Trebbia	286	53.98±0).09

In sintesi si segnalano in particolare il terremoto del 27/01/2012 di magnitudo 5.2 con epicentro nel territorio comunale di Berceto e il terremoto del 10/03/2012 di magnitudo 4.5 con epicentro in comune di Bettola tra le località dei Bigotti e dei Badoni, a pochissimi Km dal confine comunale di Morfasso; a cui è seguita una replica con epicentro all'interno del comune di Morfasso in prossimità della loc.San Michele avente magnitudo 3.2.

3 ASSETTO GEOLOGICO E GEOMORFOLOGICO

3.1 Tettonica e sedimentazione

Il Comune di Morfasso é ubicato nel medio versante padano dell'Appennino Emiliano ed è delimitato a Nord dai Klippen del M. Rocca di Moria, a Ovest dal T.Chero, dal M. S. Franca e dal M. Menegosa, ad Est Sud-Est dal T. Arda e dai M. Cornale e Carameto, a Sud dall'altipiano del M. di Lama e dalle cime ofiolitiche del M. Cravola e Groppo di Gora.

L'Appennino settentrionale è un segmento del sistema di catene alpine circummediterranee la cui porzione nord-occidentale rappresenta la transizione alle Alpi Marittime. Esso è costituito da un complesso insieme di unità tettoniche le cui caratteristiche litostratigrafiche e strutturali riflettono l'evoluzione geodinamica di questo settore di catena. Questa evoluzione si è sviluppata attraverso le fasi di rifting e di spreading triassico-giurassiche che hanno portato all'individuazione del dominio oceanico ligure-piemontese, situato tra i margini continentali delle placche europea ed apula. Le successive fasi convergenti, attive fin dal Cretaceo superiore, hanno determinato la chiusura del dominio ligurepiemontese, tramite la subduzione e l'obduzione di litosfera oceanica, e, nell'Eocene medio, la collisione A partire dall'Oligocene-Miocene, la deformazione è stata continentale. esclusivamente intracontinentale ed ha interessato il margine della placca apula con una progressiva migrazione del fronte compressivo verso est. L'Appennino è quindi caratterizzato dalla sovrapposizione tettonica dell'insieme alloctono delle Unità liguri, di origine oceanica, sull'insieme Umbro-Toscano, che rappresenta la copertura deformata e scollata dell'avampaese continentale apulo. Queste ultime affiorano prevalentemente nella parte meridionale dell'Appennino Settentrionale (Toscana ed Umbria), mentre le Unità Liguri sono ben rappresentate soprattutto nell'Appennino ligure-emiliano, costituendo una coltre continua dal Mar Ligure fino alla Pianura Padana. Questa continuità è interrotta soltanto dalle finestre tettoniche di M. Zuccone, Bobbio e Salsomaggiore, nelle quali affiorano formazioni appartenenti al Dominio Umbro-Toscano.

Figura 3.1. Schema cronostratigrafico delle successioni delle unità tettoniche (Carta Geologica d'Italia alla scala 1:50.000, Foglio 198 - Bardi, Servizio Geologico d'Italia).

Le prime unità alloctone sovrapposte alle formazioni del Dominio Umbro-Toscano sono le Unità Subliguri; al di sopra di queste si trovano le Unità Liguri, che sono suddivisibili, in funzione del dominio di provenienza, in Interne ed Esterne (le prime ricoprono le seconde). Al di sopra delle Unità Liguri giace poi in discordanza la Successione Epiligure.

3.2 Stratigrafia comunale

Le unità affioranti nell'area del territorio comunale costituiscono il settore più esterno dell'edificio strutturale dell'Appennino Settentrionale e vengono indicate in letteratura come "Liguridi Esterne" del versante padano; tutte queste unità geologiche sono di origine interamente alloctona e sono costituite in prevalenza da sedimenti torbiditici di fossa (Flysch di M.Cassio, di Bettola, di Farini d'Olmo, Formazione della val Luretta, Arenarie di Scabiazza), i cui materiali derivano dallo smantellamento dei margini sovrascorrenti in sollevamento durante la fase di convergenza delle placche; da pelagiti di piana abissale (Argille a Palombini e Argilliti dei Guselli) e da scaglie di crosta oceanica (masse ofiolitiche). Data la complessità geodinamica gli originari contatti stratigrafici sono raramente osservabili e non distinguibili in modo netto; questo ha fatto si che le successioni stratigrafiche ricostruibili nell'area del Comune di Morfasso sono di potenza limitata e spesso rappresentano parti di una singola formazione che, per la natura tettonica dei contatti che le delimitano e per la deformazione subita, assumono il rango di unità tettoniche.

3.2.1 Unità Tettonica Cassio

Nell'area di indagine è costituita da una successione stratigrafica che comprende, dal basso, due formazioni: le Arenarie di Scabiazza e il Flysch di Monte Cassio.

3.2.1.1 Arenaria di Scabiazza - SCB

Sono costituite da litoareniti micacee fini grigio nocciola e peliti siltoso-marnose grigio scure, in strati da molto sottili a medi, localmente spessi. Sono osservabili localmente alcuni strati molto spessi, fino a banchi, di marne calcaree grigie a base arenitica come anche conglomerati e calclititi in strati spessi e sottili intercalazioni di argilliti rossastre. Si presentano sempre intensamente tettonizzate, con pieghe a tutte le scale, e per gli strati di un certo spessore con una caratteristica fatturazione con vene di calcite perpendicolari alla stratificazione. Lo spessore è stimabile tra i 100 e i 250 metri circa. L'ambiente di deposizione doveva essere un bacino profondo a sedimentazione quasi esclusivamente torbiditica. L'età di deposizione è valutata in un intervallo compreso tra Cenomaniano e Santoniano.

3.2.1.2 Flysch di M.Cassio - MCS

E' costituito da marne e marne calcaree grigio nocciola, giallastre all'alterazione, a base calcarenitica fine, a frattura scheggiosa, passanti a marne argillose scagliose, in strati da spessi a banchi. A questi sono intercalati set di strati medi e sottili di arenarie medio-fini ed argille siltose. Lo spessore massimo misurato del Flysch di M.Cassio raggiunge i 1300 m. L'ambiente di deposizione doveva essere un bacino profondo, in cui la sedimentazione torbiditica era nettamente prevalente sulla normale sedimentazione emipelagica. L'età di deposizione è valutata in un intervallo compreso tra Campaniano e Maastrichtiano.

3.2.2 Unità Tettonica Groppallo

Si sviluppa in un'area che comprende i rilievi di M. Menegosa, M. Lama, Groppo di Gora e Rocca di Casali e occupa una precisa posizione strutturale: è infatti ricoperta dall'Unita Tettonica Cassio e sovrascorre l'Unità Tettonica Bettola. La formazione caratteristica dell'Unità è il Complesso di Pietra Parcellara.

3.2.2.1 Complesso di Pietra Parcellara -CPP

Si tratta di un complesso sedimentario costituito da depositi clastici grossolani, di natura torbiditica, cui sono associati olistoliti, anche di notevoli dimensioni, di varia natura, tra i quali si riconoscono:

- Argille a Palombini(APA): sequenze plurimetriche di calcilutiti silicizzate grigio-verdi in strati da medi a spessi, con spalmature verdi sulle superfici di strato, calcari marnosi grigio chiari a base talora calcarenitica fine in strati molto spessi e argilliti siltoe grigio scure in livelli da molto sottili a medi, raramente si osservano sottili strati arenitici grigio scuri;
- Calcari a Calpionelle (CCL): calcilutiti bianche o grigio chiare, tipicamente a frattura concoide, ben stratificate in strati spessi a laminazione parallela, che presentano spesso inclusi di selce in noduli, lenti allungate e livelli paralleli alla stratificazione;
- Serpentiniti (Σ): serpentiniti brecciate o più raramente massive di colore verde scuro e con spalmature di minerali fibrosi verde chiaro, le brecce hanno sempre un alto indice di spigolosità e la matrice quando presente è di natura serpentinitica.
- Diaspri (DSD): diaspri rossi in strati da sottili a molto spessi.

L'età attribuita alla formazione è un generico Cretacico superiore.

3.2.3 Unità Tettonica Bettola

E' ricoperta per sovrascorrimento dall'Unità Tettonica Groppallo o dall'Unità Tettonica Cassio e sovrascorre a sua volta l'Unità Tettonica Guselli e l'Unità Tettonica Farini. E' costituita da una successione stratigrafica che comprende, dal basso, il Flysch di Bettola e la Formazione di Val Luretta.

3.2.3.1 Flysch di Bettola -BET

E' costituito da calcari marnosi e marne, da grigie a nocciola, a base calcarenitica grigio scura, giallobruna se alterata, in strati spessi e banchi anche oltre i 6 m. Queste litologie si alternano ritmicamente ad areniti e peliti grigie, in strati da sottili a spessi, con rapporto A/P<1. Localmente la formazione presenta un notevole aumento delle porzioni pelitiche rispetto ai livelli arenitici, con banchi marnososiltosi spessi fino a 10 m. La formazione si presenta molto spesso intensamente tettonizzata, lo spessore viene stimato in circa 500 m. L'ambiente di deposizione doveva essere un bacino profondo a sedimentazione torbiditica prevalente sulla normale sedimentazione emipelagica. L'età di deposizione va dal Campaniano inferiore al Paleocene inferiore.

3.2.3.2 Formazione della Val Luretta - VLU

Affiora estesamente lungo il versante destro dalla Val Chero, tra i paesi di Guselli e San Michele ed è stata divisa in membri: il Membro di Poviago (**VLU**₁), che affiora nell'area dello studio, il Membro di Genepreto (**VLU**₃) e il Membro di Monteventano. Il *Membro di Poviago (VLU₁)* è costituito dalla ritmica alternanza di areniti e peliti marnose grigio nocciola, in strati sottili e medi, raramente spessi, a queste sono raramente intercalate delle marne e marne calcaree grigio chiare, a base arenitica e microconglomeratica, in strati da medi a molto spessi, il membro è caratterizzato dalla presenza di alcuni strati molto spessi e banchi di marne rosate e rosso mattone a base biocalcarenitica microconglomeratica. Lo spessore è valutato intorno ai 450 m. L'ambiente di deposizione doveva essere un bacino profondo a sedimentazione torbiditica prevalente sulla normale sedimentazione emipelagica. L'età del membro va dal Daniano al Selandiano.

3.2.4 Unità Tettonica Guselli

Affiora poco estesamente nell'area dello studio, strutturalmente è sovrascorsa dall'Unità Tettonica Bettola ed è in contatto tettonico con l'Unità Tettonica Farini d'Olmo tramite una faglia normale ad alto angolo. E' rappresentata dalla formazione delle Argilliti dei Guselli.

3.2.4.1 Argilliti dei Guselli - GUS

E' costituita da argilliti e argille varicolorate, dal rosso, al verde, al grigio, al vinato, con sporadiche intercalazioni di areniti di colore da grigio a verde scuro, in livelli molto sottili. Caratteristica delle Argilliti dei Guselli è l'intensa tettonizzazione subita, con formazione di pieghe strizzate a tutte le scale e piani di

taglio con superfici lucide. L'ambiente di deposizione doveva essere un bacino molto profondo a sedimentazione emipelagica, con limitati apporti da parte di correnti torbiditiche. In letteratura le argilliti dei Guselli sono attribuite al Cretaceo Superiore.

3.2.5 Unità Tettonica Farini

Strutturalmente è sovrascorsa dall'Unità Tettonica Bettola e presenta contatti per faglia con l'Unità Tettonica Guselli, che vengono interpretati come legati ad una fase successiva a quella che aveva portato l'Unità Tettonica Guselli a sovrascorrere sull'Unità Tettonica Farini. E' rappresentata dalla formazione del Flysch di Farini d'Olmo.

3.2.5.1 Flysch di Farini d'Olmo - FAR

Ha un'origine prevalentemente torbiditica ed è stata suddiviso in 4 membri che dal basso della successione stratigrafica sono:

- Membro di Predalbora (FAR₁)
- Membro di Rigolo (FAR₂)
- Membro di Costa (**FAR**₃)
- Membro di Carpadasco (FAR₄)

All'interno di queste sottounità spesso sono a loro volta riconosciute e distinte ulteriori sottounità con rango di litofacies. Nell'area di studio affiorano il *Membro di Predalbora* e il *Membro di Rigolo*.

Membro di Predalbora (FAR₁).

E' costituito da areniti medio-fini grigio-nocciola o grigio scure e peliti marnose grigio-nocciola, in strati da medi a spessi, con rapporto A/P≥1. Sono intercalate subordinate marne chiae, in strati anche molto spessi, a base calcarenitica, e calcari laminati chiari, in strati sottili e medi. Localmente, verso il tetto del membro, è presente un livello costituito da arenarie verdi e peliti rosse in strati sottili. Alla base del membro è stata distinta una litofacies calcareo-marnosa denominata litofacies di Case Poncini. Lo spessore totale del membro è valutabile intorno ai 680 m, la litofacies di Case Poncini raggiunge i 250 m di spessore. L'ambiente di deposizione doveva essere un bacino profondo a sedimentazione torbiditica prevalente sulla normale sedimentazione emipelagica. L'età del membro va dal Daniano al Selandiano.

Membro di Rigolo (FAR₂)

E' costituito da calcari marnosi e marne chiare a base calcarenitica grigia, in strati da medi a molto spessi, con locali banchi alternati a subordinate arenarie e peliti siltoso-marnose, grigio-verdastre e nocciola, in starti sottili e medi con rapporto A/P>2. Verso il tetto del membro è stata distinta localmente una litofacies pelitico-arenacea, denominata litofacies di Groppo Ducale (**FAR**_{2a}), costituita da argille debolmente marnose rosate o verdastre e arenarie grigie, a stratificazione molto sottile e sottile, con intercalati almeno due banchi di marne rosate. Localmente, verso la base, il membro di Rigolo presenta un livello di marne rosate maculate, a base calcarenitica, spesso fino 4 m. Lo spessore massimo è valutabile intorno ai 670 m. L'ambiente di deposizione doveva essere un bacino profondo a sedimentazione torbitica prevalente sulla normale sedimentazione emipelagica. L'età è stimabile nell'Eocene inferiore.

3.3 Assetto geomorfologico

Il territorio comunale di Morfasso, dal punto di vista morfo – strutturale, si colloca nel settore collinare e montuoso dell'Appennino Emiliano occidentale, appartenente alla Fascia medio – appenninica.

La Fascia medio – appenninica è rappresentata dalle unità strutturali mesozoiche Liguri e da quelle Epiliguri, che assieme ricoprono le più profonde Unità Toscane e l'unità Umbro – Marchigiana del bordo. In particolare trovano larga diffusione nel territorio le formazioni argillose o ricche di interstrati pelitici, alle quali si contrappongono lembi più o meno cospicui di flysch cretacei e terziari (sia a dominante calcarea che arenacea), ammassi ofiolitici e lembi di diaspri e Calcari a Calpionelle. Tali lembi flyscioidi e placche arenaco – marnose – pelitiche sono spesso fagliati, e i loro bordi, anche per la particolare situazione idrogeologica dovuta al substarto impermeabile, sono soggetti ad instabilità e non di rado a

deformazioni gravitative profonde di versante, con creazione di grandi nicchie di frana e scarpate caratterizzate da pendenze e contropendenze anomale contraddistinte da evidenze sartumose. Probabilmente un contributo decisivo a tali grandi forme gravitative viene dalle frequenti scosse sismiche in questo settore appenninico. L'analisi delle cartografie del territorio comunale evidenzia la grande diffusione di detriti superficiali e lembi di versanti dislocati in massa, in rapporto agli affioramenti delle formazioni ritenute in posto. La maggior parte di queste coperture è di origine gravitativa.

Le rocce più resistenti alla degradazione (flysch calcarei, ofioliti e diaspri) dominano il paesaggio tuttavia la maggior parte dello stesso è modellato in terreni scarsamente selettivi, come le Arenarie di Scabiazza, e in quelli erodibili e morfologicamente depressi, rappresentati dai terreni argillosi.

I corsi d'acqua più importanti che drenano il territorio comunale sono i torrenti Arda, Chero e Lubiana; i depositi fluvio – torrentizi sono prevalentemente tardo olocenici e relegati negli alvei attuali. In genere questi torrenti formano valli ampie con versanti che mostrano grande variabilità morfoselettiva, in alcuni casi le varici vallive si restringono rapidamente in corrispondenza di litotipi resistenti all'incisione lineare e il corso d'acqua intaglia delle strettoie simili a forre: ciò suggerisce che molti corsi d'acqua siano antecedenti al sollevamento del pede-appennino, evidenziando il loro adattamento alle strutture o ai lembi rocciosi più resistenti.

3.3.1 Depositi continentali quaternari

Questi tipi di depositi si sono formati ad opera dei vari processi sedimentari e sono legati principalmente a fenomeni gravitativi e alla dinamica fluviale. Gli accumuli di frana si distinguono sulla base del loro stato di attività in *frane attive o in evoluzione e frane quiescenti*. Le prime presentano evidenze di movimento in atto o sono state interessate da movimento negli ultimi cicli stagionali, mentre le frane quiescenti non recano evidenze di movimento. I corpi franosi dal punto di vista litologico sono costituiti da accumuli gravitativi di elementi litoidi eterogenei ed eterometrici, ad assetto caotico, in abbondante matrice pelitica.

Altri tipi di coperture originatesi per processi essenzialmente gravitativi e con l'apporto più o meno sensibile di fenomeni di ruscellamento sono i *depositi di versante*: sono costituiti da elementi lapidei eterogenei ed eterometrici, inglobati in matrice pelitica o sabbiosa talora abbondante, derivanti da processi di alterazione in situ, accumulati ad opera della gravità e rielaborati da fenomeni gravitativi e dalle acque di ruscellamento.

I depositi alluvionali caratterizzanti le aree del territorio comunale sono classificati in genere come *depositi alluvionali in evoluzione* e sono costituiti dal punto di vista litologico da ghiaie prevalenti, sabbie e locali blocchi di dimensioni anche plurimetriche; occupano per lo più l'alveo attuale del corso d'acqua o i tratti temporaneamente abbandonati ma che sono potenzialmente interessati dalle dinamiche fluviali in regime di piena ordinaria e possono essere ancora soggetti a rimobilizzazione.

4 DATI GEOTECNICI E GEOFISICI

Le indagini geognostiche e geofisiche utilizzate nel presente studio sono riportate nella tavola "Carta delle indagini". Dall'esame della suddetta carta si evidenzia come il territorio comunale sia stato ovviamente indagato soprattutto nei pressi dei centri abitati principali.

4.1 Indagini geognostiche pregresse

E' stato raccolto ed inserito nella banca dati georeferenziata un repertorio di indagini pregresse derivanti dal database comunale composto dalle indagini relative alla realizzazione del PRG '97 e alle pratiche connesse all'urbanizzazione.

Abbastanza numerose sono risultate le prove penetrometriche dinamiche [57], precisamente 43 mediante penetrometro pesante e 14 tramite penetrometro leggero; più rare quelle statiche [13]. La stratigrafia del territorio è stata inoltre indagata da qualche sondaggio [10], precisamente 7 a carotaggio continuo e 3 a distruzione, e da 3 rilievi geomeccanici effettuati nella cava di pietra; concentrati per lo più nel capoluogo comunale. Abbastanza numerose sono anche risultate le indagini geofisiche, tra cui 31

prove sismiche a rifrazione allegate alla documentazione per la redazione del PRG '97, 23 prove sismiche multicanale basate su onde di superficie (tipo MASW) e 10 prove a stazione singola (tipo HVSR).

4.2 Indagini geognostiche eseguite per la presente microzonazione sismica

Ad integrazione dei dati reperiti è stata eseguita una campagna di indagine volta all'integrazione soprattutto dei dati geofisici. In particolare sono state eseguite 21 prove sismiche a stazione singola (HVSR) e 5 sismiche tipo MASW + HVSR, sono stati inoltre realizzati 16 rilievi geomeccanici su affioramenti appartenenti alle varie formazioni presenti nel territorio comunale.

Per tutte le indagini eseguite sono riportati in allegato i rapporti di prova.

Le prove sismiche sono state eseguite in corrispondenza dei centri abitati, aventi numero di dimoranti dall'ultimo censimento maggiore o uguale a 20 unità, che sono oggetto di approfondimento di I e II livello.

4.2.1 Prove sismiche MASW+HVSR

La tecnica MASW (Multi-channel Analysis of Surface Waves) consiste nell'analisi della dispersione delle onde di superficie al fine di definire il profilo verticale della velocità di propagazione delle onde di taglio S. La MASW classica/standard consiste nella registrazione della propagazione di una classe di onde di superficie e specificatamente delle onde di Rayleigh: queste ultime vengono generate da una sorgente ad impatto verticale. Due sono gli aspetti che rendono il contributo delle onde di Rayleigh prevalente sul contributo delle onde P e Sv. Il primo aspetto è che le onde di Rayleigh trasportano circa i due terzi dell'energia generata dalla sorgente. Il secondo aspetto è che allontanandosi dalla sorgente le onde di Rayleigh subiscono un'attenuazione geometrica inferiore rispetto alle onde P e Sv, in quanto si propagano secondo fronti d'onda cilindrici e non sferici (come le altre onde) viaggiando con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In queste indagini accanto all'acquisizione MASW in Rayleigh vengono proposte anche le analisi della dispersione delle onde di Love, da analizzare congiuntamente alle Rayleigh, per meglio definire il substrato e superare talune ambiguità interpretative che possono presentarsi sugli spettri di velocità riferiti solo alle onde di Rayleigh. Le acquisizioni in onde di Love non possono sostituire completamente quelle in onde di Rayleigh ma la chiarezza dei loro spettri di velocità risulta di estrema utilità allorché gli spettri delle onde di Rayleigh risultino di ardua interpretazione in relazione alla presenza di forti segnali scatterati e all'intrecciarsi di diversi modi. Sono inoltre state eseguite misure di microtremori atte ad analizzare il rapporto spettrale H/V (Horizontal to Vertical Spectral Ratio - HVSR) utile a definire eventuali risonanze di sito e, unitamente a misure di dispersione delle onde di superficie, a meglio vincolare il profilo V_s (Dal Moro, 2010; 2011). A causa della pesante non-univocità della soluzione una modellazione del solo HVSR senza quantitative informazioni sulle Vs da parte di misure MASW non risulta sufficientemente affidabile.

L'acquisizione dei dati è stata eseguita tramite l'utilizzo di un sismografo 24 canali (modello Echo 2002) collegato a geofoni orizzontali aventi frequenza propria di 4.5 Hz. Le acquisizioni utili ad analizzare il rapporto spettrale H/V (HVSR) sono state eseguite utilizzando lo strumento SR04-GEOBOX, dotato di sensore a 2.0 Hz (Sara electronic instruments). L'analisi dei dati acquisiti è stata eseguita utilizzando il software WINMASW 5.2 versione Professional.

La 5 prove Masw+HVSR sono state eseguite rispettivamente nei pressi degli abitati di:

- Costa
- Olza
- Carignone
- Malvisi
- Rocchetta.

<u>COSTA</u>

Il valore di Vs₃₀ calcolato al piano campagna sulla base dell'analisi congiunta MASW+HVSR è risultato pari a 348 m/s. Nella figura seguente si riportano i valori di Vs registrati alle differenti profondità ed il profilo verticale delle velocità; in allegato si riportano alcuni cenni sulle metodologie utilizzate e le elaborazioni complete dei dati ottenuti.

Figura 4.1. Profilo di Vs ricavato dalla prova MASW+HVSR e valori di Vs.

<u>OLZA</u>

Il valore di Vs_{30} calcolato al piano campagna sulla base dell'analisi congiunta MASW+HVSR è risultato pari a 410 m/s. Nella figura seguente si riportano i valori di Vs registrati alle differenti profondità ed il profilo verticale delle velocità; in allegato si riportano alcuni cenni sulle metodologie utilizzate e le elaborazioni complete dei dati ottenuti.

Figura 4.2. Profilo di Vs ricavato dalla prova MASW+HVSR e valori di Vs.

CARIGNONE

Il valore di Vs₃₀ calcolato al piano campagna sulla base dell'analisi congiunta MASW+HVSR è risultato pari a 317 m/s. Nella figura seguente si riportano i valori di Vs registrati alle differenti profondità ed il profilo verticale delle velocità; in allegato si riportano alcuni cenni sulle metodologie utilizzate e le elaborazioni complete dei dati ottenuti.

Figura 4.3. Profilo di Vs ricavato dalla prova MASW+HVSR e valori di Vs.

<u>MALVISI</u>

Il valore di Vs_{30} calcolato al piano campagna sulla base dell'analisi congiunta MASW+HVSR è risultato pari a 365 m/s. Nella figura seguente si riportano i valori di Vs registrati alle differenti profondità ed il profilo verticale delle velocità; in allegato si riportano alcuni cenni sulle metodologie utilizzate e le elaborazioni complete dei dati ottenuti.

Figura 4.4. Profilo di Vs ricavato dalla prova MASW+HVSR e valori di Vs.

<u>ROCCHETTA</u>

Il valore di Vs₃₀ calcolato al piano campagna sulla base dell'analisi congiunta MASW+HVSR è risultato pari a 226 m/s. Nella figura seguente si riportano i valori di Vs registrati alle differenti profondità ed il profilo verticale delle velocità; in allegato si riportano alcuni cenni sulle metodologie utilizzate e le elaborazioni complete dei dati ottenuti.

Figura 4.5. Profilo di Vs ricavato dalla prova MASW+HVSR e valori di Vs.

4.2.2 Prove sismiche tipo HVSR

Lo strumento è costituito da una terna di geofoni (due orizzontali disposti perpendicolarmente, il terzo verticale) in grado di rispondere allo stesso modo a una medesima sollecitazione.

Le acquisizione durano 20 minuti. Le frequenze che interessano l'ambito geologico-ingegneristico sono comprese nell'intervallo tra i 0.5 e i 20 Hz.

Il principio su cui si basa questo strumento è piuttosto semplice. Misurando il rapporto H/V (con H componente orizzontale e V componente verticale) determinabile dai microtremori (le oscillazioni del suolo indotte da una serie di fattori sia naturali che antropici) si può identificare in maniera passiva la frequenza di risonanza del sottosuolo, che risulta in relazione diretta con l'amplificazione sismica.

La trattazione classica di Nakamura prevedrebbe il coinvolgimento delle onde di corpo (S e P) mentre le evidenze teoriche e sperimentali più recenti portano a concludere che il fattore determinante che determina la curva H/V sperimentale sia dato invece dalle onde di superficie (più specificatamente dall'ellitticità, cioè appunto dal rapporto che sussiste tra le componenti orizzontali e quella verticale).

Per la campagna di indagine è stato utilizzato un sismografo SR04-GEOBOX sensore 2.0Hz con una frequenza di campionamento di 300Hz ed un tempo di registrazione di 20 minuti. L'elaborazione dei dati è stata eseguita con il software WINMASW 5.2 Professional, impostando la lunghezza delle finestre a 20s e lisciamento con finestra triangolare con ampiezze 10-20%.

In allegato sono riportati i diagrammi acquisiti e le elaborazioni eseguite.

Di seguito si riportano i principali dati associati alle misure di microtremore eseguite per il presente lavoro e reperite.

N°	ID_INDPU	Longitudine	Latitudine	Fo	Ampiezza	Altri picchi significativi	Località
HV01	P81HVSR84	79343	4963218	-	-		Teruzzi
HV02	P82HVSR85	81346	4963195	10,1	2,4	4,1	Rusteghini
HV03	P83HVSR86	80574	4969843	5,3	2,7		San Michele
HV04	P84HVSR87	85107	4969096	7,8	1,9		I Rabbini
HV05	P85HVSR88	80496	4965993	1,5	3,5		Morfasso
HV06	P86HVSR89	80548	4967340	20,1	1,6		Levei
HV07	P87HVSR90	85860	4970496	2,3	1,9		Casale
HV08	P88HVSR91	81011	4965470	4,9	1,7		Cornolo
HV09	P89HVSR92	81126	4965437	5,8	2,6		Cornolo
HV10	P90HVSR93	81659	4966831	4,1	3,6	14,1	Olza
HV11	P91HVSR94	83380	4966957	2,5	3,4		Costa
HV12	P92HVSR95	85254	4969160	4,8	2,3		I Rabbini
HV13	P93HVSR96	84191	4963464	3,4	2,5		Casali
HV14	P94HVSR97	84244	4963211	7,1	1,8		Casali
HV15	P95HVSR98	83353	4964332	-	-	23,0	Pedina Inferiore
HV16	P96HVSR99	83093	4964672	7,8	3,2	3,4	Pedina Superiore
HV17	P97HVSR100	80242	4965476	4,2	2,2	26,1	Negri di Morfasso
HV18	P98HVSR101	80494	4965664	3,8	4,1	9,9	Morfasso area Municipio
HV19	P99HVSR102	80314	4966033	2,3	3,1	5,6 – 8,1	Morfasso Via Papa Giovanni XXIII
HV20	P100HVSR103	84714	4969455	-	-		Taverne
HV21	P101HVSR104	83246	4967115	6,9	3,4		Costa
HV22	P102HVSR105	82078	4972142	8,3	2,1		Carignone
HV23	P103HVSR106	79353	4968761	7,1	3,5		Case Malvisi
HV24	P104HVSR107	80421	4969805	3,1	2,5		San Michele
HV25	P105HVSR108	80412	4969647	-	-		San Michele
HV26	P106HVSR109	80756	4969747	5,2	2,3	19,0	San Michele
HV27	P107HVSR110	81542	4967038	10,4	2,6	4,4	Olza
HV28	P108HVSR111	79571	4969248	-	-	17,9	Case Malvisi
HV29	P109HVSR112	79394	4966193	1,8	2,9		Rocchetta
HV30	P110HVSR113	81937	4963611	7,0	2,8		Teruzzi
HV31	P111HVSR114	79111	4962671	7,7	2,3		Rusteghini

5 MODELLO DEL SOTTOSUOLO

Il comune di Morfasso, come ampiamente descritto nei capitoli precedenti, è caratterizzato dalla presenza di unità geologiche di origine interamente alloctona e costituite in prevalenza da sedimenti torbiditici di fossa (Flysch di M.Cassio, di Bettola, di Farini d'Olmo, Formazione della val Luretta, Arenarie di Scabiazza), i cui materiali derivano dallo smantellamento dei margini sovrascorrenti in sollevamento durante la fase di convergenza delle placche; da pelagiti di piana abissale (Argille a Palombini e Argilliti dei Guselli) e da scaglie di crosta oceanica (masse ofiolitiche).

Il substrato marino è ricoperto, ove non affiorante, da coltri di alterazione superficiali aventi spessori e grado di stabilità variabile.

Per ogni centro interessato dallo studio sono state realizzate delle sezioni geologiche riportate in allegato, correlando i dati geognostici reperiti; i relativi commenti sono riportati nel § 8.4.3.

I dati reperiti di velocità delle onde di taglio relativi ai depositi marini così come i valori di risonanza fondamentale f_0 derivanti dall'elaborazione dei dati HVSR non permettono di individuare i depositi marini come bedrock sismico così come definito dagli ICMS (velocità Vs >800 m/s).

I depositi marini pertanto costituiscono un bedrock sismico non rigido, nel quale la velocità delle onde di taglio non supera gli 800 m/s e non può essere utilizzato negli abachi per la determinazione di FA ed FV degli ICMS.

6 INTERPRETAZIONI ED INCERTEZZE

Le analisi eseguite hanno evidenziato, come descritto nei paragrafi precedenti, la presenza di un substrato marino che non può essere assimilato ad un bedrock sismico sensu ICMS (2008), pertanto nell'analisi di II Livello, ovvero nell'elaborazione dei fattori di amplificazione si è optato per l'utilizzo esclusivo degli abachi regionali contenuti nell'allegato 2 della D.A.L. 112/2007 della Regione Emilia Romagna, specifici per la presenza di litotipi del substrato con Vs<800 m/s. Una descrizione relativa all'utilizzo di tali abachi è riportato nel capitolo 7.

E' qui doveroso segnalare anche l'estrema incertezza insita nelle misure HVSR, ancor più se si considera l'importanza degli effetti topografici in un contesto montano e collinare come quello in analisi.

Inoltre si sottolinea come le indagini pregresse e quelle eseguite per la presente microzonazione hanno rivelato in parecchie situazione la presenza di una coltre d'alterazione superficiale ricoprente il substrato roccioso, lo spessore della quale è stato considerato per il calcolo dei fattori d'amplificazione, allorquando maggiore di 3 metri.

7 METODOLOGIE DI ELABORAZIONE E RISULTATI

7.1 Valutazione dei fattori di amplificazione (Il Livello)

Poiché, come descritto nel paragrafo precedente, il substrato marino presente nel territorio del comune di Morfasso evidenzia velocità Vs inferiori a 800 m/s (quindi difficilmente assimilabile ad un substrato rigido) si è scelto di utilizzare esclusivamente le tabelle per la valutazione dei fattori di amplificazione contenuti nell'allegato 2 della D.A.L. 112/2007 della Regione Emilia Romagna.

L'analisi di secondo livello, secondo la DAL 112/2007 della Regione Emilia Romagna, prevede la definizione dei coefficienti di amplificazione (FA) per il territorio urbanizzato ed urbanizzabile.

Il primo step del calcolo del valore di F.A. prevede la suddivisione del territorio indagato in funzione della profondità del bedrock.

Il secondo step del calcolo del valore di FA prevede la determinazione della velocità equivalente delle onde di taglio Vs_{H} .

La velocità delle onde di taglio è stata determinata attraverso le seguenti formule sulla base di prove geofisiche eseguite e reperite:

$$V_{S,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{S,i}}} \qquad \qquad V_{S,H} = \frac{H}{\sum_{i=1,N} \frac{h_i}{V_{S,i}}}$$

Nell'ambito collinare e pedecollinare, poiché il substrato marino presente nel territorio del comune di Morfasso ha evidenziato Vs <800 m/s, sono state utilizzate le seguenti tabelle (estratte dal § A2.1.1 all'Allegato A2 della D.A.L. 112/2007) nel caso in cui il substrato marino presenti coperture >3m.

F.A. P.G.A.

Vs_H	200	250	300	350	400	450	500	600	700	800
Н										
5	2.0	1.7	1.5	1.4	1.3	1.2	1.2	1.2	1.1	1.0
10	2.3	2.0	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0
15	2.5	2.2	1.9	1.8	1.6	1.5	1.4	1.2	1.1	1.0
20	2.3	2.2	2.1	1.9	1.7	1.6	1.4	1.3	1.1	1.0
25	2.1	2.1	2.1	1.9	1.7	1.6	1.5	1.3	1.1	1.0
30	1.9	2.0	2.0	1.9	1.7	1.6	1.5	1.3	1.1	1.0
35	1.8	1.9	2.0	1.9	1.7	1.6	1.5	1.3	1.1	1.0
40	1.7	1.9	2.0	1.8	1.7	1.6	1.5	1.3	1.1	1.0

F.A. INTENSITA' SPETTRALE - 0.1s < To < 0.5s

Vs _H	200	250	300	350	400	450	500	600	700	800
Н										
5	1.7	1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.1	1.0
10	2.2	1.9	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0
15	2.6	2.2	1.9	1.7	1.6	1.5	1.4	1.2	1.1	1.0
20	2.6	2.5	2.2	1.9	1.7	1.5	1.4	1.2	1.1	1.0
25	2.4	2.6	2.3	2.0	1.8	1.6	1.5	1.3	1.1	1.0
30	2.2	2.4	2.3	2.1	1.9	1.7	1.6	1.3	1.1	1.0
35	2.0	2.2	2.3	2.2	1.9	1.8	1.6	1.4	1.2	1.0
40	1.8	2.0	2.3	2.3	2.1	1.8	1.6	1.4	1.2	1.0

F.A. INTENSITA' SPETTRALE - 0.5s < To < 1.0s

Vs_H	200	250	300	350	400	450	500	600	700	800
Н										
5	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.2	1.1	1.0
10	1.6	1.5	1.4	1.4	1.4	1.3	1.3	1.3	1.1	1.0
15	1.9	1.7	1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.0
20	2.1	1.9	1.7	1.5	1.4	1.4	1.4	1.3	1.2	1.0
25	2.4	2.4	1.9	1.7	1.5	1.4	1.4	1.3	1.3	1.0
30	2.8	2.8	2.4	1.9	1.6	1.5	1.4	1.3	1.3	1.0
35	3.0	2.9	2.7	2.1	1.7	1.6	1.5	1.3	1.3	1.0
40	3.1	3.0	2.8	2.3	1.9	1.7	1.5	1.4	1.4	1.0

Nel caso in cui il substrato marino con Vs <800 m/s sia affiorante sono state utilizzate le seguenti tabelle (estratte dal § A2.1.1 all'Allegato A2 della DAL 112/2007).

F.A. P.G.A.									
Vs30	450	500	600	700	800				
F.A.	1.4	1.3	1.2	1.1	1.0				
F.A. INTENSITA	A' SPETTRALE - (0.1s < To < 0.5s							
Vs30	450	500	600	700	800				
F.A.	1.5	1.4	1.3	1.1	1.0				
F.A. INTENSITA	A' SPETTRALE - (0.5s < To < 1.0s							
Vs30	450	500	600	700	800				
F.A.	1.4	1.4	1.3	1.3	1.0				

I risultati delle prove geofisiche eseguite, nonché le elaborazioni realizzate sono riportati nei paragrafi 8.5-8.6, nella tavola "Carta della velocità delle onde di taglio" e nell'allegato database delle indagini.

8 ELABORATI CARTOGRAFICI

8.1 Carta delle indagini

Nel territorio del comune di Morfasso sono state raccolte diverse prove geognostiche e stratigrafie di pochi sondaggi. In particolare sono state inserite nella carta delle indagini:

- ✓ 13 prove penetrometriche statiche
- ✓ 14 prove penetrometriche dinamiche leggere
- ✓ 43 prove penetrometriche dinamiche pesanti
- ✓ 7 stratigrafie di sondaggi
- ✓ 19 rilievi geomeccanici di cui 16 eseguiti per il presente lavoro
- ✓ 31 prove sismiche a rifrazione
- ✓ 31 prove sismiche a stazione singola HVSR, *di cui 21 eseguite per il presente lavoro*
- ✓ 23 prove sismiche multicanale basate su onde di superficie, *di cui 5 realizzate per questo lavoro*.

I dati sono stati reperiti in parte nella documentazione allegata al PRG Comunale ed in parte negli archivi comunali.

8.2 Carta geologico tecnica per la microzonazione sismica

Il territorio del comune di Morfasso può essere suddiviso in aree stabili e aree potenzialmente instabili o instabili. Le aree stabili sono caratterizzate dall'affioramento delle Formazioni geologiche intese come "substrato geologico non rigido" o dalla presenza di una coltre d'alterazione superficiale al di sopra del "substrato geologico non rigido". Le aree potenzialmente instabili o instabili sono caratterizzate dalla presenza di depositi di natura gravitativa, sia attivi che quiescenti.

Dal punto di vista litologico il territorio è stato suddiviso in 3 diverse tipologie di terreni, di cui 1 relativa a terreni di copertura ed 3 relative al substrato non rigido. La classificazione dei terreni di copertura ha considerato la litologia presente nei primi metri (1.5-2.0 m) dal piano campagna, in quanto la stratigrafia dei depositi di versante delle aree in esame è molto complessa e difficilmente sintetizzabile. Le litologie appartenenti al substrato non rigido sono state a sua volta suddivise in:

- Substrato geologico non rigido stratificato (si tratta dei terreni appartenti alle formazioni quali Arenarie di Scabiazza, Argilliti dei Guselli, Formazione delle Val Luretta, Flysch di Bettola, Flysch di Farini, Flysch di Monte Cassio)
- Substrato geologico non rigido (si tratta dei terreni appartenti alle Argille a Palombini e dei Calcari a Calpionelle)
- Substrato coesivo sovraconsolidato

Nella tabella seguente sono riportati i tipi di terreno individuati con relativa descrizione e le aree che presentano tale tipologia di terreno.

Tipo di terreno	Descrizione
	Substrato geologico non rigido stratificato
NRS	Si tratta dei terreni appartenenti alle formazioni SCB, GUS, VLU1,
	BET, FAR2a, FAR2, MCS.
	Substrato geologico non rigido
NR	Si tratta dei terreni appartenenti alle formazioni APA, CCL,DSD.
CO	Substrato Coesivo Sovraconsolidato
GM	Ghiaie limose, miscela di ghiaia, sabbia e limo

L'intero territorio comunale è inoltre interessato da un'alta concentrazione di instabilità di versante (frane attive e quiescenti), principalmente di tipo complesso, che coinvolgono senza distinzione i terreni appartenenti alle varie formazioni caratterizzanti il suolo comunale.

Nella Tabella seguente sono riportate le principali caratteristiche delle frane attive e quiescenti presenti nel territorio del comune di Morfasso tra cui la localizzazione, la tipologia, la superficie. Le frane sono state identificate all'interno del database con numero progressivo univoco (ID-i); ad ognuna è associata una tipologia descritta dal codice inserito nella colonna "Tipo_i".

ID_i	Località	Tipologia	Superficie (m²)	Tipo_i
1	Carignone	quiescente - scivolamento traslazionale di terra e detrito	177.076	3023
2	Carignone	quiescente - scivolamento in blocco di roccia a grandi profondità	1.179.224	3025
3	Carignone	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	24.197	3014
4	San Michele	quiescente - scivolamento in blocco di roccia a grandi profondità	444.935	3025
5	San Michele	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	732.472	3024
6	San Michele	attiva - scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	158.363	3014
7	San Michele	attiva – scivolamento traslazionale di terra e detrito	259.451	3013
8	C. Malvisi	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	211.403	3024
9	C. Malvisi	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	217.118	3024
10	Levei	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	127.434	3024
11	Levei	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	303.766	3024
12	Levei	quiescente - scivolamento traslazionale di terra e detrito	45.056	3023
13	Levei	attiva - scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	265.297	3014
14	La Costa	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	160.980	3024
15	La Costa	quiescente – scivolamento traslazionale di terra e detrito	77.773	3023
16	La Costa	attiva - scivolamento traslazionale di terra e detrito	344.921	3013
17	l Rabbini	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	298.259	3014
18	l Rabbini	quiescente – scivolamento traslazionale di terra e roccia	91.640	3022
19	l Rabbini	attiva – scivolamento traslazionale di terra e detrito	19.855	3013
20	l Rabbini	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	343.183	3014

ID_i	Località	Tipologia	Superficie (m ²)	Tipo_i
21	Rocchetta	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	624.932	3024
22	Rocchetta	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	423.138	3024
23	Morfasso	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	436.179	3014
24	Morfasso	quiescente – scivolamento traslazionale di terra e roccia	8.100	3022
25	Morfasso	attiva – scivolamento traslazionale di terra e roccia	33.316	3012
26	Morfasso	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	290.810	3014
27	Morfasso	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	49.904	3014
28	Morfasso	quiescente – scivolamento traslazionale di terra e roccia	960	3022
29	Morfasso	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	239.382	3024
30	Morfasso	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	337.113	3014
31	Morfasso	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	193.271	3014
32	Cornolo	attiva – scivolamento traslazionale di terra e roccia	117.330	3012
33	Pedina	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	22.932	3014
34	Pedina	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	87.903	3024
35	Pedina	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	13.7871	3014
36	Casali	attiva – scivolamento traslazionale di terra e detrito	21.880	3013
37	Casali	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	200.667	3024
38	Casali	attiva – scivolamento traslazionale di terra e roccia	8.817	3012
39	Casali	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	204.575	3024
40	Rusteghini	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	516.990	3024
41	Rusteghini	attiva – scivolamento traslazionale di terra e roccia	8.494	3012
42	Rusteghini	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	327.175	3024

ID_i	Località	Tipologia	Superficie (m ²)	Tipo_i
43	Teruzzi	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	1.0389.33	3024
44	Teruzzi	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	356.925	3024
45	Teruzzi	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	80.829	3024
46	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	797	3012
47	Teruzzi	attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	433.81	3014
48	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	2.935	3012
49	Teruzzi	quiescente - scivolamento in blocco di roccia	716	3025
50	Teruzzi	quiescente – scivolamento traslazionale di terra e detrito	16.991	3013
51	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	4.171	3012
52	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	1.586	3012
53	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	762	3012
54	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	1.647	3012
55	Teruzzi	attiva – scivolamento traslazionale di terra e roccia	16.758	3012
56	Teruzzi	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	240.618	3024
57	C. Olza	quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento	592.059	3024
58	C. Malvisi	attiva - scivolamento traslazionale di terra e detrito	259.451	3013

Tabella 8.2.1. Principali caratteristiche delle frane censite nel comune di Morfasso

Per quello che riguarda gli elementi puntuali e lineari sono stati indagati i seguenti elementi lineari:

- ✓ Faglie attive
- ✓ Scarpate morfologiche (>20m)

8.3 Carta delle frequenze naturali dei terreni

Il comune di Morfasso, come ampiamente descritto nei capitoli precedenti, è caratterizzato dalla presenza di aree stabili e aree potenzialmente instabili o instabili. Le aree stabili sono caratterizzate dall'affioramento delle Formazioni geologiche intese come "substrato geologico non rigido" o dalla presenza di una coltre d'alterazione superficiale al di sopra del "substrato geologico non rigido". Le aree potenzialmente instabili o instabili sono caratterizzate dalla presenza di depositi di natura gravitativa.

Il "bedrock sismico locale" rappresenta un riflettore relativamente rigido rispetto ai sedimenti superficiali rappresentati da coperture detritiche a matrice argillo-limosa di varia origine, in grado di generare un' amplificazione (con valori generalmente compresi tra 2 e 4, raramente inferiori a 2) nei terreni fini sovrastanti.

Il territorio comunale risulta caratterizzato da frequenze naturali dei terreni normalmente comprese tra 2 e 8 Hz, indicanti riflettori presenti a profondità comprese tra circa 10 e 30 m. In alcuni casi sono stati

identificati riflettori a frequenze inferiore a 2Hz indicanti profondità di riflettori superiori a 30m e riflettori a frequenze superiori a 8Hz indicanti profondità di riflettori inferiore a 10m.

Per quello che riguarda l'ampiezza dei picchi HVSR, indicativa dei contrasti di impedenza, si evidenzia come risultino quasi sempre comprese tra 2 e 4 fatta eccezione per 3 misure: la 033028P84HVSR87 in località I Rabbini, la 033028P86HVSR89 in località Levei, la 033028P88HVSR91 in località Cornolo, la 033028P87HVSR90 in località Casale, la 033028P94HVSR97 in località Casali; queste ultime mostrano un'ampiezza inferiore a 2.

A causa dell'estrema variabilità della profondità del substrato in grado da produrre effetti di amplificazione (così come anche osservabile nelle sezioni geologiche riportate in allegato), si è scelto di elaborare una carta che riportasse esclusivamente i dati misurati, con indicazione visiva (oltre che testuale) della classe di frequenza f₀ e dell'ampiezza della curva HVSR.

8.4 Carta delle microzone omogenee in prospettiva sismica (livello 1)

La delimitazione delle aree oggetto di studio ha tenuto in considerazione i territori urbanizzati ed urbanizzabili del territorio comunale relativi a località aventi numero di dimoranti dall'ultimo censimento maggiore maggiore o uguale alle 20 unità, in particolare sono stati considerati i seguenti centri abitati:

- ✓ Carignone
- ✓ San Michele
- ✓ Case Malvisi
- Levei Chiavarini
- ✓ La Costa
- ✓ Olza
- ✓ Rocchetta
- ✓ Morfasso capoluogo
- ✓ Cornolo
- ✓ Pedina
- ✓ Casali
- 🗸 I Rabbini
- ✓ Rusteghini
- ✓ Teruzzi

All'interno di queste aree sono state identificate aree stabili suscettibili di amplificazione ed aree suscettibili di instabilità (frane attive e quiescenti).

8.4.1 Descrizione delle zone individuate

Sulla base delle tipologie dei terreni di copertura individuati nella Carta Geologico Tecnica le aree urbanizzate ed urbanizzabili sono state suddivise in 9 aree stabili suscettibili di amplificazioni locali. Sono inoltre presenti aree instabili o potenzialmente instabili riferibili a frane attive e quiescenti.

Di seguito si riporta una breve descrizione con indicazione della successione stratigrafica descritta nei paragrafi seguenti.

Zone stabili suscettibili di amplificazioni locali				
Zona n°	Località	Successione stratigrafica	Descrizione	
1	Carignone, La Costa, Cornolo, I Rabbini	2001	Substrato geologico non rigido stratificato costituito da terreni afferenti a formazioni di tipo fliscioide quali Arenarie di Scabiazza_SCB (loc. Carignone) e Flysch di Bettola_BET (loc. La Costa, Cornolo e I Rabbini). Le Formazioni presentano un'alternanza tra livelli lapidei (L) e pelitici (P) con coltri d'alterazione avente spessori variabili tra 7.5 e 12.5 metri. La coltre di alterazione è costituita da depositi detritici di natura fliscioide in abbondante matrice argillosa.	
2	Carignone, Casali, Pedina	2002	Substrato geologico non rigido stratificato costituito da terreni afferenti alla formazione delle Argilliti dei Guselli (GUS) e delle Argille a Palombini (APA) ricoperto da una coltre d'alterazione avente uno spessore variabile tra 0 e 3 metri. La coltre di alterazione è costituita da depositi detritici di natura argillitica in abbondante matrice argillosa.	
3	San Michele, Case Malvisi, La Costa, Olza, Casali, Rusteghini, Teruzzi, I Rabbini	2003	Substrato geologico non rigido stratificato costituito da terreni afferenti a formazioni di tipo fliscioide quali Formazione della Val Luretta_VLU1 (loc.San Michele e C.Malvisi), Flysch di Bettola_BET (loc. La Costa, Rusteghini, Teruzzi e I Rabbini), Flysch di Monte Cassio (loc.Casali) e Flysch di Farini d'Olmo_FAR2a (loc. C.Olza). La Formazioni presentano un'alternanza tra livelli lapidei (L) e pelitici (P) con coltri d'alterazione aventi spessori variabili tra 3 e 7.5 metri. La coltre di alterazione è costituita da depositi detritici di natura fliscioide in abbondante matrice argillosa.	
4	San Michele, Cornolo, Pedina	2004	Substrato geologico non rigido stratificato costituito da terreni afferenti alla formazione delle Argilliti dei Guselli (GUS) e delle Argille a Palombini (APA) ricoperto da una coltre d'alterazione avente uno spessore variabile tra 3 e 7.5 metri. La coltre di alterazione è costituita da depositi detritici di natura argillitica in abbondante matrice argillosa.	
5	San Michele	2005	Substrato geologico non rigido costituito da terreni afferenti al litotipo dei Calcari a Calpionelle (CCL) ricoperto da una coltre d'alterazione avente uno spessore variabile tra 0 e 3 metri. La coltre di alterazione è costituita da depositi detritici di natura calcarea in abbondante matrice argillosa.	
6	Rocchetta, Casali,Teruzzi	2006	Substrato geologico non rigido stratificato costituito da terreni afferenti a formazioni di tipo fliscioide quali Flysch di Farini d'Olmo_FAR2a (loc. Rocchetta) e Flysch di M.Cassio_MCS (loc.Casali). La Formazione presenta un'alternanza tra livelli lapidei (L) e pelitici (P) con coltri superficiali aventi spessori variabili tra 3 e 7.5 metri. La coltre superficiale è costituita da depositi di versante (a3) di natura fliscioide in abbondante matrice argillosa.	
7	Levei, Rocchetta, Morfasso, La Costa, I Rabbini, Rusteghini, Casali, Teruzzi	2007	Substrato geologico non rigido stratificato costituito da terreni afferenti a formazioni di tipo fliscioide quali Flysch di Bettola_BET (loc. Levei, La Costa, I Rabbini, Rusteghini, Teruzzi e), Arenarie di Scabiazza (loc.Casali) e Flysch di Farini d'Olmo_FAR2a (loc.Rocchetta e Morfasso). Le formazioni presentano un'alternanza tra livelli lapidei (L) e pelitici (P) con coltri d'alterazione aventi spessori variabili tra 0 e 3 metri. La coltre di alterazione è costituita da depositi detritici di natura fliscioide in abbondante matrice argillosa	
8	Rocchetta	2008	Substrato geologico non rigido stratificato costituito da terreni afferenti a formazioni di tipo fliscioide quali Flysch di Farini d'Olmo_FAR2a (loc. Rocchetta). La Formazione presenta un'alternanza tra livelli lapidei (L) e pelitici (P) con coltri superficiali aventi spessori variabili tra 7.5 e 12.5 metri. La coltre superficiale è costituita da depositi alluvionali (AES8a) a granulometria mista costituiti da alternanze di limi sabbiosi e limi- argillosi intercalati a livelli di ghiaia in matrice argilloso - limosa.	
9	Rocchetta	2009	Substrato geologico non rigido stratificato costituito da terreni afferenti a formazioni di tipo fliscioide quali Flysch di Farini d'Olmo_FAR2a (loc. Rocchetta). La Formazione presenta un'alternanza tra livelli lapidei (L) e pelitici (P) con coltri superficiali aventi spessori variabili tra 7.5 e 12.5 metri. La coltre superficiale è costituita da depositi di versante (a3) di natura fliscioide in abbondante matrice argillosa.	

Zone suscettibili di instabilità					
ID_i	Località	Descrizione			
1	Carignone	a2d – Frana quiescente - scivolamento traslazionale di terra e detrito			
2	Carignone	a2h – Frana quiescente - scivolamento in blocco di roccia a grandi profondità			
ર	Carignone	a1g – Frana attiva – scorrimento di terra e roccia dato dalla combinazione di due			
	cungnone	o più tipi di movimento			
4	San Michele	a2h – Frana quiescente - scivolamento in blocco di roccia a grandi profondità			
5	San Michele	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
6	San Michele	a1g – Frana attiva - scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
7	San Michele	a1d – Frana attiva – scivolamento traslazionale di terra e detrito			
8	C. Malvisi	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
9	C. Malvisi	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
10	Levei	a2d – Frana quiescente - scivolamento traslazionale di terra e detrito quiescente			
11	La Costa	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
12	Rabbini	a2b – Frana quiescente – scivolamento traslazionale di terra e roccia			
13	Rabbini	a1d – Frana attiva – scivolamento traslazionale di terra e detrito			
14	Rabbini	a1g – Frana attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
15	Pocchotta	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di			
10	NUCCHELLA	due o più tipi di movimento			
16	Morfasso	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
17	Morfasso	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
18	Morfasso	a1b – Frana attiva – scivolamento traslazionale di terra e roccia			
19	Morfasso	a1g – Frana attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
20	Morfasso	a2b – Frana quiescente – scivolamento traslazionale di terra e roccia			
21	Morfasso	a1g – Frana attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
22	Morfasso	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
23	Cornolo	a1b – Frana attiva – scivolamento traslazionale di terra e roccia			
24	Pedina	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
25	Pedina	a1g – Frana attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
26	Pedina	a1g – Frana attiva – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
27	Casali	a1d – Frana attiva – scivolamento traslazionale di terra e detrito			
28	Casali	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o niù tini di movimento			
29	Casali	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tini di movimento			
30	Rusteghini	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tini di movimento			
31	Teruzzi	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di duo o più tipi di movimento			
32	Teruzzi	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
22	Тегитті	alb – Frana attiva – scivolamento traslazionale di terra e roccia			
20	Тегитті	a1b – Frana attiva – scivolamento traslazionale di terra e roccia			
35	Teruzzi	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due e niù tini di magimente			
26	Toruzzi	aue o più lipi ai movimento			
50	1010221	a LU — FI ANA ALLIVA — SCIVUIAINENILU LI ASIAZIUNAIE UN LETTA E TUCCIA			
	Zone suscettibili di instabilità				
------	----------------------------------	--	--	--	--
ID_i	Località	Descrizione			
37	Olza	a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			
38	Casali	a2g a2g – Frana quiescente – scorrimento di terra e roccia dato dalla combinazione di due o più tipi di movimento			

8.4.2 Schemi dei rapporti stratigrafici

Nelle tabelle seguenti sono riportate le colonne litostratigrafiche sintetiche rappresentative delle successioni litostratigrafiche individuate ed una loro breve descrizione.

RELAZIONE ILLUSTRATIVA

RELAZIONE ILLUSTRATIVA

40

RELAZIONE ILLUSTRATIVA

Si riportano i rilievi geomeccanici eseguiti sugli affioramenti del substrato marino appartenente alle unità:

- di tipo fliscioide: Arenarie di Scabiazza_SCB (loc. Casali), Flysch di Bettola_BET (loc. La Costa, Cornolo, Rabbini, Rusteghini, Teruzzi, Levei), Flysch di Farini d'Olmo_FAR2 (loc. Rocchetta e Olza), Formazione della Val Luretta_VLU1 (loc.San Michele e Case Malvisi), Flysch di M.Cassio_MCS (loc.Casali);
- di tipo argillitico: Argilliti dei Guselli_GUS (loc. Cornolo e Carignone), Argille a Palombini_APA (loc.San Michele, Pedina e Casali);

RG01	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: la Costa	185N/28	2,4	20
Data: 10/05/2013			20
Affioramento: BET	8	6.	22
		and the second	24
and the second	Smark 1 1		30
State of the second	Shere of States		35
- Contraction of the second	and the second second second	The All Colors	48
and the second second		Same and the state	50
Statement of the second	and the second	Barry Contraction of the Contrac	50
No the second		a series and	55
The second second			
And a start in		The second	
	九三十七分		
A PERCENT			
March March		A CARLER OF	
	State Part		
3.1.2/3 CALLS		and the second	

- di tipo calcareo: Calcari a Calpionelle_**CCL** (loc.San Michele)

Si evidenzia un valore di Jv(m⁻¹) di 2.4, indice di una fratturazione contenuta.

Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
1)	Disgragata a fratturata	18
0	impossibile eseguire	20
	conteggio discontinuita.	25
CONTRACTOR OF	and set the	26
try-Sector State	State of the	28
Cart Land		38
		45
	Giacitura stratificazione	Giacitura stratificazione Stima discontinuità Jv (m ⁻¹) Disgregato e fratturato, imposabile eseguire conteggio discontinuità

Si evidenzia una rilevante fratturazione e disgregazione caratteristica della Formazione che ha impedito il conteggio delle discontinuità.

RG03	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Teruzzi	50N/15	10,5	15
Data: 10/05/2013			28
Affioramento: BET			30
S. L. States	Care and		36
			46
			50
		Present and	60
	Part Mr. "	Carl and the	
All and a second second			
	the second		
ALC IN	上一次一生		
	LALTA J		
	VAL MELS	A A A A A A A A A A A A A A A A A A A	
All state - Mark			
there there there there a	ALL AND ALL	A ANT	
all have all at the first factor		C. C	

Si evidenzia un valore di Jv(m⁻¹) di 10.5, indice di una fratturazione elevata.

RG04	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Casali	140N/25	5,5	10
Data: 10/05/2013			10
Affioramento: MCS			12
	JAN UN		12
		Prepart	26
			30
	12 Carl		32
- KARATE	OTAL		40
			47
	1 and		52
	1-33		56
	N.		
A Charles La		- 4	
A THE REAL OF		The Martin	
		No. W. Color	
and the second of the	Sale and		

Si evidenzia un valore di Jv(m⁻¹) di 5.5, indice di una moderata fratturazione.

RG05	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Casali	20N/5	10,1	30
Data: 11/05/2013			36
Affioramento: MCS			36
			38
			42
			52
			53
	SELSTINE THE	AN A TANK	
and the second	A CONTRACTOR		
	States Training	A MARY MARY	
- A CONTRACT OF A CONTRACT	Carl and and		
the state of the s		Contraction of the second	
The American State			

Si evidenzia un valore di Jv(m⁻¹) di 10.1 indice di una elevata fratturazione.

RG06	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Casali	<u>~</u>	Diagragata a fratturata	14
Data: 11/05/2013		impossibile eseguire	16
Affioramento: SCB		conteggio discontinuita.	20
	N. W. S. C. S. C. C.	and the second second	20
A CONTRACTOR OF THE OWNER			22
			32
NOAR PARTY OF THE REAL PARTY	CONTRACTOR IN	A LANGE COM	40
a Real Property in the second second		AND THE REAL PROPERTY OF	
		A CONTRACTOR	
	Set Co		
the second second second	Mary Ser	AL STREET	
Contraction Contraction	A State of the second		
	Carlon Sectores	Lation Star Page	
	Comment of the second	The second second	
I want the second s	and a state		

Si evidenzia una rilevante fratturazione e disgregazione caratteristica della Formazione che ha impedito il conteggio delle discontinuità.

RG07	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Pedina	240N/90	Livelli calcarei stratificati alternati a	40
Data: 11/05/2013		marnosi sono piegati. I valori ricavati	46
Affioramento: APA		determinati sui livelli calcarei.	50
			54
	and the second		
	ALL APA	A DECEMBER OF	
Printer IE	AND I	A CARDEN F	
TAR CALLS THE MAN	Real of		
A State of the second		Contraction of the second	
		the second second	
Contraction - Varia	79 11	S The second	
	and the second	1 1 1 1 1 1 1 1 1 1	
		K. Star	
A STATE OF A STATE	Par and	The state of the	
	The Perfor		
and the second second	ALL ALPA	and the second	

Si evidenziano livelli calcareo – marnosi alternati a livelli argillitici intensamente tettonizzati. Le misure sclerometri che sono state eseguite ovviamente sui livelli calcareo-marnosi.

RG08	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Rusteghini	230N/16	11,5	10
Data: 11/05/2013			10
Affioramento: BET			20
	CAR BERT	All Months and a second	20
	Contraction of the	A Chara Alle	32
			38
			42
	- Abar -	and the second	
		all a	
The second	MAR A	ST MA	
A state of		H AND	
A PAUS A	Carl Carlos	A PARA	
Condition of the	Als - C		
and the second second	AT A THE A		
	いちょうそう	and the	
	山田市		
	FARE -		

Si evidenzia un valore di Jv(m⁻¹) di 11.5, indice di una fratturazione elevata.

RG09	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Rocchetta	140N/37	F	30
Data: 11/05/2013		Fratture pressoche assenti IV<2	32
Affioramento: FAR2		assenti. JV<2	36
States 1 1 States			38
The state of	The		40
And All	14/5/ 14	1 Mar Martin	
IFTTA CONST	mail		
ITTA P	State of		
	t- year the		
R. C. Longton	Strate -		
	a line and	1120112	
and the second second	ALL AND ALL AN		
		A CALCULA	
	The states of	San - Hill and	

Si evidenzia un valore di Jv(m⁻¹) minore 2.0, indice di una fratturazione molto contenuta.

RG10	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Cornolo	190N/50	6,5	22
Data: 14/05/2013			24
Affioramento: BET			30
Sector do to	1 - C - C - C - C - C - C - C - C - C -	A CONSTRUCTION	34
etter and a second		Y.	40
A Lagran in	has the lot		44
16 20 100	Contract of the second	the Martin State	52
	Alle March	and the second	
	Strain and		
all and how	11/11/2005	STOP WAR	
A DEAD			
1 - 14.2		Contraction of the	
	And Street Street		
Star Barris	In the second second	and the second	
	A COMPANY OF THE	to the second	
A		The Way We	
	- La Carlo		

Si evidenzia un valore di Jv(m⁻¹) di 6.5, indice di una fratturazione abbastanza elevata.

RG11	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Levei Data: 14/05/2013 Affioramento: GUS	5N/20	Disgregato e fratturato, — impossibile eseguire conteggio discontinuità. —	

Si evidenzia una rilevante fratturazione e disgregazione caratteristica della Formazione che ha impedito il conteggio delle discontinuità.

RG12	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Olza	190N/60	Diservente a featurate	14
Data: 14/05/2013		impossibile eseguire	14
Affioramento: FAR2a		conteggio discontinuita.	16
	State -		18
	35	and the second	20
	A state	and the second	22
1			24
A THE TREAS	E.S.V.		
and the second second	174 8 1		
	1201		
	1.	1 Carlos	
P x Y	A L COM	No. Contraction	
	1		
		and the second	
		State State	
AN AND		A CARLER CONTRACT	
	STATISTICS.		

Si evidenzia una rilevante fratturazione e disgregazione caratteristica della Formazione che ha impedito il conteggio delle discontinuità.

RG13	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: i Rabbini	310N/30	Livelli arenacei eterogenei da molto a	14
Data: 14/05/2013		poco alterati. Non è stato	14
Affioramento: BET		conteggio discontinuità.	20
			24
and all all and and			30
2 1 Carlos - 1-	Star Sans	100 C 10	34
The second second	Sales - Ast	A HARRY CALL	38
		A CARL	42
and the second s	16-1		48
and the state of the second		20 20 20 -	50
			50
		All and the state	60
A Company of the second	has the	10 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
100 m 100 m 100 m			
	2		
		10 5 B	
	the second second		

Si evidenzia una rilevante fratturazione e disgregazione.

RG14	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Levei	70N/25	10,0	20
Data: 14/05/2013			26
Affioramento: BET	5		42
		MOS CONTRACTOR	42
AND STREET STREET	ALLE ADDA		48
			50
A AND A CALL	A CAL		54
	The second		54
		22000000	54
	and a		54
	1- Cut		56
	C- Jamester	A REAL	58
Planting 1976	A A A	And the set	
		STATISTICS STATISTICS	
M. R. Starter	A COMPANY		
		A LE	
	-	A PARTICIPACION	

Si evidenzia un valore di Jv(m⁻¹) di 10.0, sintomo di una elevata fratturazione.

RG15	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: San Michele	150N/20	5,9	14
Data: 14/05/2013			14
Affioramento: CCL			16
		11-11-2	20
North Andrews	A LANGER AND A		20
Les and marks		6 FALL	22
	THE STATES A		32
	the second second		40
Service and		AN IN THE OWNER	50
	and the second second	No. Contraction	
	a character of		
	- The State		
BED GALLAN		A PARTIE	
The state of the second		and the state	
CONTRACTOR OF THE			

Si evidenzia un valore di Jv(m⁻¹) di 5.9 sintomo di una moderata fatturazione.

RG16	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: San Michele	150N/45	11,3	18
Data: 14/05/2013			20
Affioramento: VUL1			24
	742 0000		26
	V IN	12 YEAR	26
A STATISTICS	The season		32
			40
	CONTRACTOR OF	LO CANANA SA	42
	And the second	A COR COL	
	17		
	12 30	Jan Kan Star	
	2200 C	A DECEMBER	
	The second second	Section 200	
		AD MOLE OF	

Si evidenzia un valore di Jv(m⁻¹) di 11.3 sintomo di una rilevante fatturazione caratteristica della Formazione.

8.4.3 Sezioni geologiche

Le sezioni geologiche sono state realizzate correlando i dati geognostici reperiti in ognuno dei centri abitati unitamente ai rilievi geomeccanici eseguiti per il presente studio.

Sono state individuate 19 sezioni estratte a partire dalla topografia desunta dalla carta CTR per le quali sono stati individuati i rapporti stratigrafici con il substrato marino.

Per quanto riguarda la giacitura si sono eseguiti dei rilevi geomeccanici sulle formazioni affioranti e si sono utilizzati i dati inclusi nel Database Regionale.

Di seguito una descrizione sintetica delle sezioni elaborate e riportate in Allegato.

Sezione 01 I Rabbini. La sezione si sviluppa E-W a nord del centro abitato de I Rabbini. Si evidenzia come i depositi di frana quiescente che interessano il settore e che ricoprono il Flysch di Bettola (BET) abbiano uno spessore variabile. A monte la sezione mostra la presenza del substrato marino rappresentato dal Flysch di Bettola (BET) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 0 e 3 metri.

Sezione 02 I Rabbini. La sezione si sviluppa N-S attraverso il centro abitato de I Rabbini. A monte la sezione mostra la presenza del substrato marino rappresentato dal Flysch di Bettola (BET) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri, a valle si rinvengono depositi di frana attiva.

Sezione 03 La Costa. La sezione si sviluppa circa N-S attraverso il centro abitato de La Costa. Si evidenzia la presenza del substrato marino rappresentato dal Flysch di Bettola (BET) caratterizzato da una coltre d'alterazione avente spessore variabile tra 7.5 e 12.5.

Sezione 04 Olza. La sezione si sviluppa NNW-SSE attraverso il centro abitato di Case Olza. Si evidenzia la presenza del substrato marino rappresentato dal Flysch di Bettola (BET) e dal Flysch di Farini (FAR2) caratterizzato da una coltre d'alterazione superficiale avente spessore variabiletra 3 e 7.5 metri.

Sezione 05 San Michele. La sezione si sviluppa SSE-NNW a sud del centro abitato di San Michele. Si evidenzia la presenza del substrato marino rappresentato dalla Formazione della Val Luretta (VLU1) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri. A valle della sezione si rinvengono dei depositi di origine gravitativa.

Sezione 06 San Michele. La sezione si sviluppa circa N-S attraverso il centro abitato di San Michele. Si evidenzia come i depositi di frana quiescente che interessano il settore e che ricoprono il Flysch di M.Cassio abbiano uno spessore assai variabile. A monte del centro abitato si rileva la presenza del substrato marino rappresentato dalla Argille a PAlombini (APA) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri.

Sezione 07 Carignone. La sezione si sviluppa NNW - SSE attraverso il centro abitato di Carignone. Si evidenzia la presenza del substrato marino rappresentato dalle Arenarie di Scabiazza (SCB) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 7.5 e 12.5 metri.

Sezione 08 Cà Malvisi. La sezione si sviluppa SSE-NNW attraverso il centro abitato dei Malvisi. Si evidenzia la presenza del substrato marino rappresentato dalla Formazione della Val Luretta (VLU1) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri.

Sezione 09 Levei-Chiavarini. La sezione si sviluppa SSE-NNW attraverso il centro abitato di Levei. Si evidenzia la presenza del substrato marino rappresentato dal Flysch di Bettola (BET) caratterizzato da una coltre d'alterazione superficiale avente spessore tra 0 e 3 metri.

Sezione 10 Levei-Chiavarini. La sezione si sviluppa NNW - SSE attraverso il centro abitato dei Chiavarini. Si evidenzia la presenza del substrato marino rappresentato dal Flysch di Bettola (BET) caratterizzato da una coltre d'alterazione superficiale avente spessore tra 3 e 7.5 metri.

Sezione 11 Rocchetta. La sezione si sviluppa NW-SE attraverso il centro abitato di Rocchetta. A monte si rivengono dei depositi di versante dallo spessore variabile che evolvono in depositi di frana quiescente e che ricoprono il Flysch di Farini d'Olmo.

Sezione 12 Morfasso. La sezione si sviluppa SW-NE attraverso il centro abitato di Morfasso. Si evidenziano come i depositi di frana attiva e quiescente che interessano il settore e che ricoprono il Flysch di Farini d'Olmo abbiano uno spessore assai variabile.

Sezione 13 Morfasso. La sezione si sviluppa ENE-WSW attraverso il centro abitato di Morfasso. Si evidenziano come i depositi di frana attiva che interessano il settore e che ricoprono il Flysch di Farini d'Olmo abbiano uno spessore assai variabile.

Sezione 14 Morfasso. La sezione si sviluppa NE-SW attraverso il centro abitato di Morfasso. A monte si evidenzia la presenza del substrato marino rappresentato dal Flysch di Farini d'Olmo (FAR2) caratterizzato da una coltre d'alterazione superficiale avente spessore tra 0 e 3 metri. A valle il substrato è ricoperto da depositi di frana attiva e quiescente.

Sezione 15 Cornolo. La sezione si sviluppa N-S attraverso il centro abitato di Cornolo. Si evidenzia a monte la presenza del substrato marino rappresentato dal Flysch di Bettola avente una coltra d'aterazione di spessore variabile tra 7.5 e 12.5 metri, a valle la presenza del substrato marino rappresentato dalle Argilliti dei Guselli (GUS) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri.

Sezione 16 Pedina. La sezione si sviluppa circa E-W attraverso il centro abitato di Pedina per circa 300 metri. Si evidenzia la presenza del substrato marino rappresentato dalle Argille a Palombini (APA) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri.

A valle si rinvengono dei depositi di origine gravitativa aventi spessori variabili, unitamente ad un substrato marino rappresentato dalle Argille a Palombini (APA) e dai Calcari a Calpionelle (CCL) caratterizzati da una coltre d'alterazione superficiale avente spessore tra 0 e 3 metri.

Sezione 17 Casali. La sezione si sviluppa NNW-SSE attraverso il centro abitato di Casali. Si evidenzia la presenza del substrato marino rappresentato dal Flysch di Monte Cassio (MCS) caratterizzato da una coltre d'alterazione superficiale avente spessore variabile tra 3 e 7.5 metri.

Sezione 18 Rusteghini. La sezione si sviluppa NW-SE attraverso il centro abitato di Rusteghini. Si evidenziano come i depositi di frana quiescente che interessano il settore e che ricoprono il Flysch di Bettola abbiano uno spessore assai variabile.

Sezione 19 Teruzzi. La sezione si sviluppa NW-SE attraverso il centro abitato di Teruzzi. A monte si evidenziano depositi di versante e depositi di origine gravitativa dallo spessore variabile che ricoprono il substrato marino rappresentato dal Flysch di Bettola. A valle si rinviene un substrato marino rappresentato dal Flysch di Bettola (BET) caratterizzato da una coltre d'alterazione superficiale avente spessore tra 0 e 3 metri.

8.4.4 Sezioni topografiche

Sono state eseguite sette sezioni topografiche estratte a partire dalla topografia desunta dalla carta CTR, in aree in cui la pendenza del rilievo fosse superiore a 15° in vicinanza dei centri analizzati, relative agli abitati di Casali, I Rabbini, Olza, Pedina, Rusteghini.

Nelle figure seguenti si riportano le sezioni topografiche individuate.

RELAZIONE ILLUSTRATIVA

Le sezioni topografiche sopra riportate sono state utilizzate per la determinazione del fattore di amplificazione topografico secondo l'allegato 2 della DAL 112/2007. In tutti i casi le elaborazioni hanno fatto registrare un fattore topografico Ft uguale a 1, ad esclusione di due zone suscettibili di amplificazione in località Pedina che saranno descritte nel capitolo § 8.6.

8.5 Carta delle velocità delle onde di taglio S (Vs)

Nella Carta delle velocità delle onde di taglio sono riportate tutte le misure utilizzate per la definizione della velocità delle onde di taglio nel territorio comunale (28 misurazioni Masw unite in vari casi all'analisi HVSR). In particolare sono stati riportati per ogni punto di misura la profondità del substrato, il tipo di misura (MASW, SAWS, HVSR, etc), il valore di Vs₃₀ ed il valore di Vs_H, (calcolata come riportato in § 7.1.)

Le formazioni marine affioranti nel territorio comunale possono rientrare nella categoria "*litotipi del substrato con Vs<800m/s*" così come definiti nella D.A.L. 112/2007 della Regione Emilia Romagna. A conferma di cio' sta l'esecuzione delle Masw per il presente studio (cfr § 4.2.1.)

L'analisi complessiva dei dati rilevati a livello comunale mette in luce valori di Vs_{30} estremamente variabili e compresi tra 226 e 763 m/s, si evidenzia dunque come non sia possibile eseguire una suddivisione del territorio per range omogenei di Vs_{30} . Analizzando più in dettaglio occorre fare una distinzione sull'ubicazione delle 28 prove prese in considerazione:

- 11 sono state eseguite su depositi di frana o altri tipi di coperture quaternarie (in rosso nella tabella sotto riportata) e denominate come gruppo Masw Cover.
- 17 sono state effettuate su substrato sub-affiorante o su terreni caratterizzati da una coltre superficiale di alterazione (in nero nella tabella sotto riportata) denominate come gruppo Masw Bedrock.

N°	ID_INDPU	Vs30	Vs _h	Prof.Bedrock	Tipo di deposito interessato	Località
MASW01	L1MASW1	<u>396</u>	348	<i>9.5</i>	Deposito di frana quiescente	S.Michele
MASW02	L2MASW2	459	224	5.2	Substrato VLU1 (Formazione della Val Luretta) caratterizzato da coltre di alterazione superficiale	S.Michele
MASW03	L3MASW3	469	269	6.0	Substrato BET (Flysch di Bettola) caratterizzato da coltre di alterazione superficiale	Casale
MASW04	L4MASW4	577	<u>328</u>	8.5	Depositi quaternari continentali	Rocchetta
MASW05	L5MASW5	638	1	1	Substrato sub – affiorante BET (Flysch di Bettola)	Levei
MASW06	L6MASW6	489	355	10.2	Substrato MCS (Flysch di M.Cassio) caratterizzato da coltre di alterazione superficiale	Pelizzone
MASW07	L7MASW7	763	420	4.9	Substrato APA (Argille a Palombini) caratterizzato da coltre di alterazione superficiale	Pedina Inf.
MASW08	L8MASW8	518	367	2.1	Substrato APA (Argille a Palombini) caratterizzato da coltre di alterazione superficiale	Strada Pedina-Sperongia
MASW09	L9MASW9	437	230	6.4	Deposito di frana quiescente	Casali
MASW10	L10MASW10	538	209	5.1	Substrato APA (Argille a Palombini) caratterizzato da coltre di alterazione superficiale	Pedina Inf.
MASW11	L11MASW11	525	209	2.7	Substrato sub-affiorente BET (Flysch di Bettola)	Malvisotti
MASW12	L12MASW12	347	197	<u>9.5</u>	Deposito di frana quiescente	l Rabbini
MASW13	L13MASW13	461	245	7.3	Deposito di frana quiescente	Teruzzi
MASW14	L14MASW14	391	191	4.9	Substrato BET (Flysch di Bettola) caratterizzato da coltre di alterazione superficiale	Teruzzi La Piana

Di seguito la tabella esemplificativa al riguardo.

N°	וופחאו חו	Vc30	Vc.	Prof Redrock	Tino di denosito interessato	Località
MASW/15	115MASW15	310	239	16.0	Denosito di frana quiescente	Rusteghini
MASW16	L16MASW15	310	280	24.7	Deposito di frana quiescente	S Michele
IVIAS VII	LIUWASWIO	540	200	24.7	Substrato BET (Elvsch di Bettola)	5. WICHEIE
MASW17	117MASW17	389	189	54	caratterizzato da coltre di alterazione	l Rabbini
	21/10/07/17	505	105	5.7	superficiale	
MASW18	L18MASW18	322	245	16.0	Deposito di frana quiescente	Morfasso
MASW19	L19MASW19	309	282	22.8	Deposito di frana quiescente	Morfasso
A4ACIA/20	120144514/20	<i>c</i> 01	250	2.0	Substrato sub-affiorante BET (Flysch	Levei
IVIASVVZU	LZUIVIASVVZU	601	259	2.9	di Bettola)	Level
					Substrato BET (Flysch di Bettola)	
MASW21	L21MASW21	375	214	6.7	caratterizzato da coltre di alterazione	Casale
					superficiale	
MASW22	L22MASW22	500	183	2.4	Substrato sub-affiorenate GUS	Cornolo
					(Argilliti dei Guselli)	
MASW23	L23MASW23	434	284	8.8	Deposito di versante	Taverne
					Substrato BET (Flysch di Bettola)	
MASW24	L24MASW55	348	215	9.7	caratterizzato da coltre di alterazione	La Costa
					superficiale	
A4ACIA/25	125144514/56	202	202	5.0	Substrato BET (Flysch di Bettola)	
IVIASW25	L25IVIASW56	392	203	5.0	caratterizzato da contre al alterazione	Olza
					Superficiule Substrato SCB (Arenarie di Scabiazza)	
MASW/26	126MASW/57	317	185	74	caratterizzato da coltre di alterazione	Carignone
111/13/1/20	220111131131	517	105	7.4	superficiale	Cangnone
				·	Substrato VLU1 (Formazione della Val	
MASW27	L27MASW58	365	184	7.5	Luretta) caratterizzato da coltre di	Malvisi
					alterazione superficiale	
MASW28	L28MASW59	226	166	16.5	Deposito di frana quiescente	Rocchetta
.	******					

La distinzione fatta sopra è chiaramente osservabile anche considerando i valori di Vs₃₀, maggiori ovviamente dove il substrato è sub-affiorante o interessato da spessori di coltre d'alterazione più bassi e minori dove si registrano coperture aventi spessori più alti. In dettaglio il gruppo Masw Bedrock mostra valori di Vs₃₀ variabili tra 317 e 763 m/s mentre per il gruppo Masw Cover variano da 226 a 577 m/s. L'elemento che si preme sottolineare è comunque l'estrema variabilità dei valori Vs₃₀ come conseguenza dell' elevatissima mutabilità delle caratteristiche (alterazione, fratturazione ecc.) geo-litologiche caratterizzanti i terreni del territorio comunale.

8.6 Carta di microzonazione sismica (livello 2)

Poiché, come descritto nei capitoli precedenti, il substrato marino presente nel territorio del comune di Morfasso evidenzia velocità Vs decisamente inferiori a 800 m/s (quindi difficilmente assimilabile ad un substrato rigido) si è scelto di utilizzare esclusivamente le tabelle per la valutazione dei fattori di amplificazione contenuti nell'allegato 2 della D.A.L. 112/2007 della Regione Emilia Romagna, la cui descrizione è riportata nel capitolo 7.

Di seguito si riportano i risultati delle analisi condotte per i principali ambiti urbanizzati ed urbanizzabili del comune di Morfasso.

8.6.1 Carignone

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione delle Arenarie di Scabiazza (SCB) e alle Argilliti dei Guselli (GUS). E' caratterizzata da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.1. Rappresentazione microzone omogenee. Abitato di Carignone.

Zona 1	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2001	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 2.3	[SCB] caratterizzato da Vs<800 m/s a profondità comprese tra 7.5-
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">2.2</to<0.5s>	12.5 m dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.6</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx$ 185 m/s H \approx 7.5 m [derivante dalle prove sismiche MASW26
	(033028L26MASW57)e HV22(033028P102HVSR105)].
Zona 2	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2002	Ambito di Appennino e margine appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 1.3	[GUS] caratterizzato da Vs<800 m/s s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.4</to<0.5s>	dal p.c. Per la definizione di questa zona, si è fatto riferimento ad un
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	valore di Vs ₃₀ \approx 500 m/s [derivante dalla prova sismica MASW22
	(033028L22MASW22), eseguita su GUS].

8.6.2 San Michele

L'area in esame è contraddistinta nella porzione occidentale dalla presenza di depositi afferenti alla Formazione della Val Luretta (VLU1), mentre nella parte orientale dal Flysch di M.Cassio (MCS), dalle Argille a Palombini (APA) e dai Calcari a Calpionelle (CCL). Le porzioni instabili o potenzialmente instabili sono evidenziate in figura in puntinato verde e riportano l'ID delle zone suscettibili di instabilità.

Figura 8.2. Rappresentazione microzone omogenee. Abitato di San Michele.

7	
20na 3 Stratigrafia tina - 2002	Zona di amplificazione stratigrafica.
	AITIDITO DI APPENNINO E MARGINE APPENNINICO-PADANO COI SUDSTRATO MARTINO
[FX] - F.A. P.G.A = 2.0	[VLU1] caratterizzato da Vs<800 m/s a profondita comprese tra 3-7.5
[FY] - F.A. Intensita spettrale 0.1s<10<0.5s = 1.7	
[Fz] - F.A. Intensita spettrale 0.5s<10<1s = 1.4	Per la definizione di questa zona, si e fatto riferimento ad un valore di
	$Vs_{H} \approx 224$ m/s e H \approx 5 m [derivante dalle prova sismica MASW2 (033028L2MASW2)].
Zona 4	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2004	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 2.0	[APA] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.7</to<0.5s>	dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	Vs _H ≈ 229 m/s [derivante dalla prova sismica MASW10
	(033028L10MASW10) su APA] e Vs _H ≈ 224 m/s [derivante dalla prova
	sismica MASW2 (033028L2MASW2) eseguita nei pressi dell'area in
	esame]. Per la determinazione dello spessore della copertura si è fatto
	riferimento ad un valore di H \approx 5 m [derivante dalla prova SR04
	(033028L32SR27)].
Zona 5	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2005	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO con substrato marino
[Fx] - F.A. P.G.A = 1.3	[CCL] caratterizzato da Vs<800 m/s s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.4</to<0.5s>	dal p.c. in riferimento alla presenza di affioramenti rocciosi.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{30} \approx 540$ m/s [derivante dalle prova sismica MASW10
	(033028I 10MASW10) eseguita su APA]

8.6.3 Case Malvisi

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione della Val Luretta (VLU1). Sono presenti anche porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.3. Rappresentazione microzone omogenee. Abitato di Case Malvisi.

Sono state individuate le seguenti microzone:

Zona 3	Zona di amplificazione stratigrafica.	
Stratigrafia tipo = 2003	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino	
[Fx] - F.A. P.G.A = 2.0	[VLU1] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5	
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.7<="" th=""><th>m dal p.c.</th></to<0.5s>	m dal p.c.	
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di	
	Vs _H ≈ 184 m/s [derivante dalla prova sismica	
	MASW27(033028L27MASW58)]. Per la determinazione dello spessore	
	della copertura si è fatto riferimento ad un valore di H $pprox$ 4.5 m	
	[derivante dalla prova sismica SR22 (033028L50SR45)].	

8.6.4 Levei-Chiavarini

L'area del in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET). E' caratterizzata anche da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità rilevato nella Carta della MOPS.

Figura 8.4. Rappresentazione microzone omogenee. Abitato di Levei-Chiavarini.

Sono state individuate le seguenti microzone:

Zona 7	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2007	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 1.2	[BET] caratterizzato da Vs<800 m/s s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.3</to<0.5s>	dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.3</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{30} \approx 600$ m/s [derivante dalle prove sismiche MASW5e20
	(033028L5MASW5-033028L20MASW20) eHV06 (033028P86HVSR89)].

8.6.5 La Costa

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET). E' caratterizzata nella parte occidentale da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.5. Rappresentazione microzone omogenee. Abitato de La Costa.

	
Zona 1	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2001	Ambito di appennino e margine appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 2.3	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 7.5-
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">2.2</to<0.5s>	12.5 m dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.6</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx 215$ m/s e H ≈ 9.5 m [derivante dalle prove sismiche MASW24
	(033028L24MASW55) e HV21 (033028P101HVSR104)].
Zona 3	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2003	Ambito di Appennino e margine Appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 2.0	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.7<="" th=""><th>m dal p.c. Per la definizione di questa zona, si è fatto riferimento ad</th></to<0.5s>	m dal p.c. Per la definizione di questa zona, si è fatto riferimento ad
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	un valore di Vs _H \approx 215 m/s [derivante dalle prove sismiche MASW24
	(033028L24MASW55) e HV21 (033028P101HVSR104)]. Per la
	determinazione dello spessore della copertura si è fatto riferimento
	ad un valore di H compreso tra 3-7.5 m in considerazione della
	vicinanza di affioramenti rocciosi.
Zona 7	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2007	Ambito di Appennino e margine Appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 1.3	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.4<="" th=""><th>dal p.c. in riferimento alla presenza di affioramenti rocciosi.</th></to<0.5s>	dal p.c. in riferimento alla presenza di affioramenti rocciosi.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" th=""><th>Per la definizione di questa zona, si è fatto riferimento ad un valore di</th></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	Vs ₃₀ ≈ 484 m/s [derivante dalle prove sismiche MASW24
	(033028L24MASW55) e HV21 (033028P101HVSR104)] da cui sono
	stati estratti gli strati e i corrispondenti valori di Vs appartenenti alla
	copertura.
L	

8.6.6 Case d'Olza

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET) e del Flysch di Farini d'Olmo (FAR2a). E' caratterizzata inoltre nella porzione orientale da aree instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.6. Rappresentazione microzone omogenee. Abitato di Olza.

E' stata individuata la seguente microzona:

_	Zona 3	Zona di amplificazione stratigrafica.
	Stratigrafia tipo = 2003	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
	[Fx] - F.A. P.G.A = 2.0	[FAR2a] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5
	[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.7</to<0.5s>	m dal p.c.
	[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" td=""><td>Per la definizione di questa zona, si è fatto riferimento ad un valore di</td></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
		$Vs_{H} \approx 203$ m/s e H ≈ 5.0 m [derivante dalle prove sismiche MASW25
		(033028L25MASW56), HV10(033028P90HVSR93) e HV27
		(033028P107HVSR110)].

In alcune porzioni di territorio di Olza sono state individuate scarpate con pendenza >15°, come individuato nel § 8.4.4. In questa sede è stata eseguita una prima valutazione degli effetti topografici sulla base di quanto indicato nell'allegato A2 del DAL 112/2007, le cui risultanze sono riportate nella figura seguente. Il valore di amplificazione topografica (St), nella sezione analizzata, è risultato pari a 1.0.

Figura 8.7. Scheda per il calcolo delle amplificazioni topografiche.

8.6.7 Rocchetta

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Farini d'Olmo (FAR2). Sono inoltre presenti depositi detritici (a3) e depositi alluvionali a granulometria mista (AES8a).E' caratterizzata da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.8. Rappresentazione microzone omogenee. Abitato di Rocchetta.

7
Zona ui ampinicazione stratigranca.
AMBILO UI APPENNINO E MARGINE APPENNINICO-PADANO CON SUBSTICIO MATIMO
[FAR2a] caratterizzato da VS<800 m/s a protonuita comprese tra 3-7.5
III udi p.c. Der la definizione di guesta zona, si è fatte riferimente ad un valere di
Ven a 200 m/s [derivante della prova signize MASW28
$v_{S_{H}} \approx 200$ m/s [derivante dalla prova sismica MASW28]
Zona di amplificazione stratigrafica.
Ambito di appennino e margine appenninco-padano con substrato
tra 0.2 m dal n c
lid U-S III Udi p.c. Dar la definizione di guesta zone, si è fatta riferimente ad un valore di
Ven a 400 m/s [derivante della prove signize MASW28
$v_{30} \approx 400$ III/s [derivante dana prove sistinca wiasw28] (022028128MACMED) de sui come stati estrati ali strati e i
(033028L28MASW59) ud cui sono sidii estidili gii siidii e i
Zona di amplificazione stratigrafica.
AITIBILO UI APPENNINO E MARGINE APPENNINICO-PADANO (OI
tra 7 5 12 5 m dol n c
lia 7.3-12.3 III uai p.c. Der la definizione di guesta zona, si è fatte riferimente ad un valore di
VeH = 220 m/s c o H = 8 E m [dorivanto dalla prova sigmica MASW04
Zona di amplificazione stratigrafica
Ambito di Appennino e Marcine Appenninico-papano con substrato marino
caratterizzato da Vsc800 m/s a profondità comprese tra 7.5-12.5 m
dal n.c.
Per la definizione di questa zona, si è fatto riferimento ad un valore di
Vs. ≈ 330 m/s s e H ≈ 8.5 m [derivante dalla prova sismica MASW04
(03302814MASW4)]
Zona di amplificazione stratigrafica
Ambito di APPENNINO E MARGINE APPENNINICO-PADANO con
substrato marino [FAR2a] caratterizzato da Vs<800 m/s a profondità
comprese tra 7.5-12.5 m dal p.c.
Per la definizione di guesta zona, si è fatto riferimento ad un valore di
VsH 2 200 m/s [derivante dalla prova sismica MASW28
(033028L28MASW59)].

8.6.8 Morfasso capoluogo

L'area del capoluogo è contraddistinta dalla presenza da depositi afferenti al Flysch di Farini d'Olmo (FAR2 e FAR1a). E' caratterizzata inoltre da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.9. Rappresentazione microzone omogenee. Abitato di Morfasso E' stata individuata la seguente microzona:

Zona 7	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2007	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO con substrato marino
[Fx] - F.A. P.G.A = 1.4	[FAR2a] caratterizzato da Vs<800 m/s a profondità comprese tra 0-3
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.5</to<0.5s>	m dal p.c., in riferimento alla presenza di affioramenti rocciosi.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di $Vs_{30} \approx 400$ m/s [derivante dalla prove sismiche MASW18 (033028L18MASW18), MASW 19 (033028L19MASW19) e MASW 28 (033028L28MASW59) eseguita su FAR2 a Rocchetta da cui sono stati estratti gli strati e i corrispondenti valori di Vs appartenenti alla conertural

8.6.9 Cornolo

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET) e delle Argilliti dei Guselli (GUS). E' caratterizzata inoltrre da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.10. Rappresentazione microzone omogenee. Abitato di Cornolo.

Zona 4	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2004	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 2.0	[GUS] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.7<="" td=""><td>m dal p.c.</td></to<0.5s>	m dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" td=""><td>Per la definizione di questa zona, si è fatto riferimento ad un valore di</td></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_H \approx 200$ m/s e H ≈ 5 m [derivanti rispettivamente dalla prova sismica MASW22 (033028L22MASW22), e dalla prova penetrometrica dinamica DPSH15 (033028P40DP40)].
Zona 1	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2001	Ambito di appennino e margine appenninico-padano con substrato
[Fx] - F.A. P.G.A = 2.3	marino [BET] caratterizzato da Vs<800 m/s a profondità comprese tra
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">2.2</to<0.5s>	7.5-12.5 m dal p.c
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.6<="" td=""><td>Per la definizione di questa zona, si è fatto riferimento ad un valore di</td></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_H \approx 200$ m/s e H ≈ 8 m [derivanti rispettivamente dalla prova sismica
	MASW22 (033028L22MASW22), dalla prova penetrometrica dinamica
	DPSH17 (033028P42DP42)].

8.6.10 Pedina

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione delle Argille a Palombini (APA). E' caratterizzata da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.11. Rappresentazione microzone omogenee. Abitato di Pedina.

Sono state individuate le seguenti microzone:

Zona 2	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2002	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 1.0	[APA] caratterizzato da Vs<800 m/s con coperture inferiori a 3 m dal
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.0<="" th=""><th>p.c.</th></to<0.5s>	p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.0<="" th=""><th>Per la definizione di questa zona, si è fatto riferimento ad un valore di</th></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{30}\approx760$ m/s e H ≈5 m [derivante dalla prova sismica MASW7
	(033028L7MASW7)].
Zona 4	Zona di amplificazione stratigrafica e topografica.
Stratigrafia tipo = 2004	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 2.0	[APA] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.7<="" th=""><th>dal p.c.</th></to<0.5s>	dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" th=""><th>Per la definizione di questa zona, si è fatto riferimento ad un valore di</th></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H}\approx$ 209 m/s e H \approx 5 m [derivante dalla prova sismica MASW10
	(033028L10MASW10)].Per il valore di Ft si è fatto riferimento
	all'allegato 2 della DAL 112/2007.

In alcune porzioni di territorio di Pedina sono state individuate scarpate con pendenza >15°, come individuato nel § 8.4.4.. In questa sede è stata eseguita una prima valutazione degli effetti topografici sulla base di quanto indicato nell'allegato A2 del DAL 112/2007, le cui risultanze sono riportate nella figura seguente. Il valore di amplificazione topografica (St), nelle sezioni analizzate, è risultato pari rispettivamente a 1.125 e 1.00.

Figura 8.12. Scheda per il calcolo delle amplificazioni topografiche_sezione Pedina 57.

Figura 8.13. Scheda per il calcolo delle amplificazioni topografiche_sezione Pedina 58.

8.6.11 Casali

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di M.Cassio (MCS), delle Argille a Palombini (APA) e delle Arenarie di Scabiazza (SCB). E' caratterizzata da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.14. Rappresentazione microzone omogenee. Abitato di Casali.

Zona 2	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2002	Ambito di appennino e margine appenninico-padano con substrato
[Fx] - F.A. P.G.A = 1.3	marino [APA] caratterizzato da Vs<800 m/s a profondità comprese tra
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.4<="" th=""><th>0-3 m dal p.c.</th></to<0.5s>	0-3 m dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" th=""><th>Per la definizione di questa zona, si è fatto riferimento ad un valore di</th></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{30} \approx 540$ m/s [derivante dalla prova sismica MASW10
	(033028L10MASW10), eseguita su APA].
Zona 3	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2003	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO con substrato marino
[Fx] - F.A. P.G.A = 1.7	[MCS] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.5</to<0.5s>	m dal p.c., valore stimato in funzione della topografia e della presenza
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" td=""><td>di affioramenti rocciosi.</td></to<1s>	di affioramenti rocciosi.
	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx 230$ m/s [derivante dalla prova sismica MASW09
	(033028L9MASW9)].
Zona 6	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2006	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO con substrato marino
[Fx] - F.A. P.G.A = 1.7	caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5 m dal
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.5<="" td=""><td>p.c.</td></to<0.5s>	p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" td=""><td>Per la definizione di questa zona, si è fatto riferimento ad un valore di</td></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx 230$ m/s e H ≈ 6 m [derivanti rispettivamente dalla prove
	sismiche MASW09 (033028L9MASW9) e SR18 (033028L46SR41)].
Zona 7	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2007	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 1.4	[SCB] caratterizzato da Vs<800 m/s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.5</to<0.5s>	dal p.c., in riferimento alla presenza di affioramenti rocciosi.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{30} \approx 320$ m/s [derivante dalle prova sismica MASW26
	(033028126MASW57) eseguita su SCB]

In alcune porzioni di territorio di Casali sono state individuate scarpate con pendenza >15°, come individuato nel § 8.4.4. In questa sede è stata eseguita una prima valutazione degli effetti topografici sulla base di quanto indicato nell'allegato A2 del DAL 112/2007, le cui risultanze sono riportate nelle figure seguenti. Il valore di amplificazione topografica (St), nella sezione analizzata, è risultato pari a 1.0.

Figura 8.15. Scheda per il calcolo delle amplificazioni topografiche_sezione Casali59

Figura 8.16. Scheda per il calcolo delle amplificazioni topografiche_sezione Casali60

8.6.12 I Rabbini

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET). E' caratterizzata da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.17. Rappresentazione microzone omogenee. Abitato de I Rabbini.

Sono state individuate le seguenti microzone:

	T
Zona 1	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2001	Ambito di appennino e margine appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 2.3	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 7.5-
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">2.2</to<0.5s>	12.5m dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.6<="" th=""><th>Per la definizione di questa zona, si è fatto riferimento ad un valore di</th></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx 189$ m/s e H ≈ 10 m [derivante rispettivamente dalla prove
	sismiche MASW17 (033028L17MASW17) e SR11 (033028L39SR34)]
Zona 3	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2003	Ambito di Appennino e margine Appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 2.0	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =1.7<="" th=""><th>dal p.c.</th></to<0.5s>	dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" th=""><th>Per la definizione di questa zona, si è fatto riferimento ad un valore di</th></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx 189$ m/s e H ≈ 5 m/s [derivante dalla prova sismica MASW17]
	(033028L17MASW17)].
Zona 7	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2007	Ambito di Appennino e margine appenninico-padano con substrato marino
[Fx] - F.A. P.G.A = 1.4	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.5</to<0.5s>	dal p.c., in riferimento alla presenza di affioramenti rocciosi e ai
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" th=""><th>risultati della prova sismica SR12(033028L40SR35)</th></to<1s>	risultati della prova sismica SR12(033028L40SR35)
	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$V_{S_{20}} \approx 390-435 \text{ m/s}$ [derivante dalle prove sismiche MASW17]
	(033028L17MASW17) - MASW23 (033028L23MASW23)]

In alcune porzioni di territorio de I Rabbini sono state individuate scarpate con pendenza >15°, come individuato nel § 8.4.4.. In questa sede è stata eseguita una prima valutazione degli effetti topografici sulla base di quanto indicato nell'allegato A2 del DAL 112/2007, le cui risultanze sono riportate nelle figure seguenti. Il valore di amplificazione topografica (St), nella sezione analizzata, è risultato pari a 1.0.

Figura 8.18. Scheda per il calcolo delle amplificazioni topografiche_sezione Rabbini56

8.6.13 Rusteghini

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET). E' caratterizzata inoltre da vaste porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.19. Rappresentazione microzone omogenee. Abitato di Rusteghini.

Sono state individuate le seguenti microzone:

Zona 3	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2003	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 1.7	[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.5</to<0.5s>	dal p.c.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =<b="">1.4</to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{H} \approx 240 m/s$ e H $\approx 5 m$ [derivante rispettivamente dalla prova sismica
	MASW15 (033028L15MASW15) e dalle prove penetrometriche
	dinamiche DPSH31 (033028P56DP56)] e DPSH32 (033028P57DP57)].
Zona 7	Zona di amplificazione stratigrafica.
Stratigrafia tipo = 2007	Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[Fx] - F.A. P.G.A = 1.4	[BET] caratterizzato da Vs<800 m/s s a profondità comprese tra 0-3 m
[Fy] - F.A. Intensità spettrale 0.1s <to<0.5s =<b="">1.5</to<0.5s>	dal p.c., in riferimento alla presenza di affioramenti rocciosi.
[Fz] - F.A. Intensità spettrale 0.5s <to<1s =1.4<="" td=""><td>Per la definizione di questa zona, si è fatto riferimento ad un valore di</td></to<1s>	Per la definizione di questa zona, si è fatto riferimento ad un valore di
	$Vs_{30} \approx 390$ m/s [derivante dalla prova sismica MASW14]
	(033028L14MASW14)], eseguita a Teruzzi su Flysch di Bettola.

In alcune porzioni di territorio di Rustghini sono state individuate scarpate con pendenza >15°, come individuato nel § 8.4.4. In questa sede è stata eseguita una prima valutazione degli effetti topografici sulla base di quanto indicato nell'allegato A2 del DAL 112/2007, le cui risultanze sono riportate nelle figure seguenti. Il valore di amplificazione topografica (St), nella sezione analizzata, è risultato pari a 1.0.

Figura 8.20. Scheda per il calcolo delle amplificazioni topografiche_sezione Rusteghini 61

8.6.14 Teruzzi

L'area in esame è contraddistinta dalla presenza da depositi afferenti alla Formazione del Flysch di Bettola (BET). E' caratterizzata da porzioni instabili o potenzialmente instabili che in figura sono evidenziate in puntinato verde e che riportano l'ID delle zone suscettibili di instabilità.

Figura 8.21. Rappresentazione microzone omogenee. Abitato di Teruzzi.

Zona di amplificazione stratigrafica.
Ambito di appennino e margine appenninico-padano con substrato marino
[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5 m
dal p.c.
Per la definizione di questa zona, si è fatto riferimento ad un valore di
$Vs_{H} \approx 245$ m/s [derivante dalla prova sismica MASW13
(033028L13MASW13)].
Zona di amplificazione stratigrafica.
Ambito di Appennino e margine Appenninico-padano con substrato marino
caratterizzato da Vs<800 m/s a profondità comprese tra 3-7.5 m dal
p.c.
Per la definizione di questa zona, si è fatto riferimento ad un valore di
$Vs_{H} \approx 245$ m/s [derivante dalla prova sismica MASW13
(033028L13MASW13)].
Zona di amplificazione stratigrafica.
Ambito di APPENNINO E MARGINE APPENNINICO-PADANO CON substrato marino
[BET] caratterizzato da Vs<800 m/s a profondità comprese tra 0-3 m
dal p.c.
Per la definizione di questa zona, si è fatto riferimento ad un valore di
$Vs_{30} \approx 390$ m/s [derivante dalle prove sismiche MASW14
033028L14MASW14)].

8.7 Commenti finali e criticità

Lo studio di microzonazione simica è stato redatto ai sensi degli "Indirizzi e criteri per la microzonazione sismica" (Gruppo di Lavoro MS 2008), dei "Contributi per l'aggiornamento degli "Indirizzi e criteri per la microzonazione sismica" (AA.VV 2011) e degli "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica" (D.A.L. Regione Emilia Romagna n.112/2007).

Le analisi condotte hanno avuto come prima fase di lavoro l'acquisizione ed archiviazione dei dati geognostici (Carta delle indagini ed annesso data base delle prove) e delle informazioni geologico sismiche generali e locali (carta geologico tecnica, schema geologico e tettonico comunale). Successivamente a questo primo step di lavoro sono state eseguite una serie di indagini geognostiche atte ad integrare i dati acquisiti ed a colmare le lacune conoscitive emerse. Acquisite le nuove indagini sono state redatte le carte delle frequenze naturali dei terreni, la carta delle microzone omogenee in prospettiva simica (MOPS) e le sezioni geologiche.

In sintesi le prime tre fasi di lavoro hanno portato alla redazione del primo livello di approfondimento. In dettaglio queste fasi hanno permesso di archiviare complessivamente: 13 prove penetrometriche statiche, 57 prove penetrometriche dinamiche, 7 stratigrafie di sondaggi, 19 rilievi geomeccanici di cui 16 eseguiti per il presente lavoro.

Le indagini geofisiche complessivamente archiviate sono risultate pari a 31 prove sismiche a rifrazione, 28 prove sismiche multicanale basate su onde di superficie (M.A.S.W.) di cui 5 eseguite per il presente lavoro e 31 prove passive a stazione singola (Prove tipo H.V.S.R.), di cui 21 realizzate per il presente lavoro.

L'elaborazione dei dati sismici ha consentito di ricavare la velocità delle Vs riportate nella carta delle velocità delle onde di taglio S. Le analisi eseguite hanno evidenziato la presenza di un substrato marino che non può essere assimilato ad un bedrock sismico in sensu ICMS (2008) in quanto le indagini geotecniche e sismiche hanno consentito di rilevare una velocità delle onde di taglio dei depositi marini compresa tra circa 200 e 750 m/s, valore inferiore al dato di riferimento pari a 800 m/s. Considerando questo dato nell'analisi di II Livello, ovvero nell'elaborazione dei fattori di amplificazione, si è optato per l'utilizzo esclusivo degli specifici abachi regionali caratteristici per la presenza di litotipi del substrato con Vs<800 m/s (Allegato 2 della D.A.L. 112/2007 della Regione Emilia Romagna).

L'analisi complessiva dei dati rilevati a livello comunale mette in luce valori di Vs_{30} estremamente variabili e compresi tra 226 e 763 m/s, si evidenzia dunque come non sia possibile eseguire una suddivisione del territorio per range omogenei di Vs_{30} . Analizzando più in dettaglio occorre fare una distinzione sull'ubicazione delle prove prese in considerazione:

- 11 sono state eseguite su depositi di frana o altri tipi di coperture quaternarie (Masw Cover);
- 17 sono state effettuate su substrato sub-affiorante o su terreni caratterizzati da una coltre superficiale di alterazione (Masw Bedrock).

La distinzione fatta sopra è chiaramente osservabile considerando i valori di Vs₃₀, maggiori dove il substrato è sub-affiorante o interessato da spessori di coltre d'altrezione e minori dove si registrano coperture di varia origine aventi spessori più alti. In dettaglio il gruppo Masw Bedrock mostra valori di Vs₃₀ variabili tra 317 e 763 m/s mentre per il gruppo Masw Cover variano da 226 a 577 m/s. L'elemento che si preme sottolineare è comunque l'estrema variabilità dei valori Vs₃₀ come conseguenza dell' elevatissima mutabilità delle caratteristiche (alterazione, fratturazione ecc.) geo-litologiche caratterizzanti i terreni del territorio comunale.

Inoltre si sottolinea come le indagini pregresse e quelle eseguite per la presente microzonazione hanno rivelato in parecchie situazione la presenza di una coltre d'alterazione superficiale ricoprente il substrato roccioso, lo spessore della quale è stato considerato per il calcolo dei fattori d'amplificazione, allorquando maggiore di 3 metri.

Per quello che riguarda i valori di amplificazione calcolati per le diverse aree individuate (analisi di Il Livello per aree stabili soggette ad amplificazione locale) si evidenzia come i fattori determinati siano in diretta correlazione con lo spessore dei depositi di copertura.

In particolare per *Morfasso capoluogo* sono stati stimati valori di F.A. di P.G.A di 1.4, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s di 1.5, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Per l'abitato di *Carignone* sono stati stimati valori di F.A. di P.G.A variabili tra 1.3 e 2.3, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.4 e 2.2, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s variabili tra 1.4 e 1.6.

Per l'abitato di **San Michele** sono stati stimati valori di F.A. di P.G.A variabili tra 1.3 e 2.0, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.4 e 1.7, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Per l'abitato di *Case Malvisi* sono stati stimati valori di F.A. di P.G.A di 2.0, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s di 1.7, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Per l'abitato di *Levei* sono stati stimati valori di F.A. di P.G.A di 1.2, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s di 1.3, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.3.

Per l'abitato di *La Costa* sono stati stimati valori di F.A. di P.G.A variabili tra 1.3 e 2.3, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.4 e 2.2, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s variabili tra 1.4 e 1.6.

Per l'abitato di **Olza** sono stati stimati valori di F.A. di P.G.A di 2.0, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s di 1.7, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Per l'abitato di **Rocchetta** sono stati stimati valori di F.A. di P.G.A variabili tra 1.4 e 2.3, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.5 e 2.2, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s variabili tra 1.4 e 1.6.

Per l'abitato di *Cornolo* sono stati stimati valori di F.A. di P.G.A variabili tra 2.0 e 2.3, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.7 e 2.2, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s variabili tra 1.4 e 1.6.

Per l'abitato di **Pedina** sono stati stimati valori di F.A. di P.G.A variabili tra 1.0 e 2.0, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.0 e 1.7, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s variabili tra 1.0 e 1.4.

Per l'abitato di **Casali** sono stati stimati valori di F.A. di P.G.A variabili tra 1.3 e 1.7, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.4 e 1.5, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Per l'abitato de **I Rabbini** sono stati stimati valori di F.A. di P.G.A variabili tra 1.4 e 2.3, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s variabili tra 1.5 e 2.2, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s racchiusi tra 1.4 e 1.6.

Per l'abitato di **Rusteghini** sono stati stimati valori di F.A. di P.G.A variabili tra 1.3 e 1.7, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s di 1.5, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Per l'abitato di **Teruzzi** sono stati stimati valori di F.A. di P.G.A variabili tra 1.4 e 1.7, valori di intensità spettrale (rapporto di intensità di Housner) per periodi compresi tra 0.1<T0<0.5s di 1.5, valori di intensità spettrale per periodi compresi tra 0.5<T0<1.0s di 1.4.

Lo studio eseguito ha consentito di individuare numerose aree instabili ai sensi della D.A.L. 112/2007 rappresentate da frane attive e/o quiescenti. Le aree instabili localizzate nei vari ambiti necessitano di una analisi di terzo livello.

9 CONFRONTO DELLA DISTRIBUZIONE DEI DANNI DEGLI EVENTI PASSATI

La ricerca eseguita sui principali cataloghi relativi alla sismicità storica tra cui **CFTI** – catalogo dei forti terremoti (461 a.c. – 1997), **NT4.1** – catalogo parametrico dei terremoti italiani al di sopra della soglia del danno, **CPTI 04** – catalogo parametrico dei terremoti italiani (217a.c. – 2002), **DBMI11** – database macrosismico italiano, **ISIDe** - Database parametrico e strumentale della sismicità italiana e negli archivi comunali non ha evidenziato la registrazione di danni significativi o sensibili alle strutture ed alle infrastrutture.

Morfasso, marzo 2015

Dr.Geol.Filippo Segalini

EOLOGO
10 BIBLIOGRAFIA

AA.VV. (2011): "Contributi per l'aggiornamento degli "Indirizzi e criteri per la microzonazione sismica", Ingegneria sismica Anno XXVII, n°2. Patron editore.

Basili R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M.M. Tiberti, E. Boschi (2008), The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology, Tectonophysics

Boccaletti M, Martelli L. a cura di (2004) "Carta sismotettonica della Regione Emilia Romagna" Selca Firenze

Martini A. Zanzucchi G. (2000): "Note illustrative alla Carta Geologica d'Italia in scala 1:50.000, Foglio 198 "Bardi" ISPRA / Regione Emilia-Romagna /Serv. Geol. Naz.

Carta Geologica d'Italia in scala 1:50.000 (2009) – Foglio 198 "Bardi". Regione Emilia Romagna/Serv. Geol. Naz.

Camassi R. Stucchi M. (1998) "NT4.1, un catalogo parametrico di terremoti di area italiana al di sopra della soglia del danno" http://emidius.mi.ingv.it/NT/CONSNT.html

Cerrina Ferroni A., Martelli L., Martinelli P., Ottria P.(2002): "Carta geologico strutturale dell'Appennino Emiliano Romagnolo alla scala 1:250000" Regione Emilia-Romagna - CNR

Delibera dell'Assemblea legislativa della Regione Emilia Romagna progr. n°112 - oggetto n°3121 del 2 maggio 2007, "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica.

Facciorusso J. (a cura di) (2012): "Microzonazione sismica, uno strumento consolidato per la riduzione del rischio. L'esperienza della Regione Emilia-Romagna". Ed Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli.

ISIDe Working Group (INGV, 2010), Italian Seismological Instrumental and parametric database: http://iside.rm.ingv.it

Iwasaki T., Tokida K., Tatsuoka F., Watanabe S. Yasuda S, Sato H. (1983) "Microzonation for soil liquefaction potential using simplified methods", III Int. Conf. In Microzon., San Francisco

Gruppo di lavoro CPTI (2004). Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04), INGV, Bologna.

Gruppo di Lavoro (2004): Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma

Gruppo di Lavoro MS (2008): "Indirizzi e criteri per la microzonazione sismica" Conferenza delle Regioni e delle Provincie Autonome – Dipartimento della protezione Civile, Roma.

Locati M., Camassi R., Stucchi M. (a cura di), (2011). "DBMI11, la versione 2011 del Database Macrosismico Italiano". Milano, Bologna, http://emidius.mi.ingv.it/DBMI11.

Serva L. (1990): "Il ruolo delle Scienze della Terra nelle analisi di sicurezza di un sito per alcune tipologie di impianti industriali: il terremoto di riferimento per il sito di Viadana (MN)." Boll. Soc. Geol. It., 109, 375-411.

Varnes D.J. (1978): "Slope movement types and processes" In: "Landslides: Analysis and control" Transportation Research Board, National Accademy of Sciences, Special report 176, Chapter 2.

11 ALLEGATI

11.1 Prove sismiche tipo Masw+HVSR

033028L24MASW55_ MASW 24_ loc. COSTA

ACQUISIZIONE ED ELABORAZIONE DEI DATI

STRUMENTAZIONE

L'acquisizione dei dati è stata eseguita tramite l'utilizzo di un sismografo 24 canali (modello Echo 2002) collegato a geofoni orizzontali aventi frequenza propria di 4.5 Hz.

È stato realizzato uno stendimento sismico lineare di lunghezza pari a 46 metri con spaziatura di 2 metri tra i 24 geofoni e tempo di acquisizione pari a 1 secondo.

L'acquisizione delle onde di Love è del tutto analoga a quelle di Rayleigh, cambia solo il tipo di sorgente e l'orientazione dei geofoni orizzontali (asse perpendicolare allo stendimento per le Love e asse parallelo per le Rayleigh).

Figura 11.1. Stendimento sismico (a sinistra) e acquisizione HVSR (a destra).

L'energizzazione è stata effettuata in posizione esterna rispetto ai geofoni estremi con offsets pari a 2, 4, 6 e 8 m; per le onde di Rayleigh si è utilizzata una mazza battente di 8 kg ad impatto verticale su piastra metallica, per quelle di Love una mazza battente ad impatto di taglio su piastra in polipropilene.

Le acquisizioni utili ad analizzare il rapporto spettrale H/V (HVSR) sono state eseguite utilizzando lo strumento SR04-GEOBOX, dotato di sensore a 2.0 Hz (Sara electronic instruments). L'analisi dei dati acquisiti è stata eseguita utilizzando il software WINMASW 5.2 versione Professional.

ANALISI RAYLEIGH + LOVE

Figura 11.2. Acquisizione della componente orizzontale delle onde Rayleigh (RVF) e delle onde di Love (THF). Sulla sinistra le tracce sismiche acquisite (sismogramma), sulla destra gli spettri di velocità.

Successivamente alla pulizia del dato si è proceduto alla modellazione diretta delle curve di dispersione ottenendo le curve riportate di seguito. Da notare come allo spettro di velocità osservato siano state sovrapposte tramite la tecnica della modellazione diretta le curve di dispersione, dei primi 2 modi per le onde di Rayleigh e per le onde di Love. Si evidenzia come lo spettro in onde Rayleigh non mostra chiaramente il modo fondamentale (accade spesso in siti caratterizzati da una copertura superficiale sopra ad un *bedrock* roccioso).

Figura 11.3. Spettri di velocità con sovrapposte le curve di dispersione dei principali modi riconosciuti.

Nella figura successive si riporta lo spettro d'ampiezza medio delle 3 componenti (NS, EW e verticale) ed i valori HVSR per l'acquisizione eseguita.

Figura 11.4. Spettri d'ampiezza medi delle 3 componenti (NS, EW e verticale) e valori di HVSR.

Figura 11.5. HVSR: in verde le misure effettuate, in magenta la curva HVSR modellata tramite ellitticità delle onde di superficie (Lunedei & Albarello, 2009). Il modello è chiaramente lo stesso usato per l'analisi delle onde di superficie.

033028L25MASW56_MASW25_loc. CASE OLZA

ACQUISIZIONE ED ELABORAZIONE DEI DATI

STRUMENTAZIONE

L'acquisizione dei dati è stata eseguita tramite l'utilizzo di un sismografo 24 canali (modello Echo 2002) collegato a geofoni orizzontali aventi frequenza propria di 4.5 Hz.

È stato realizzato uno stendimento sismico lineare di lunghezza pari a 46 metri con spaziatura di 2 metri tra i 24 geofoni e tempo di acquisizione pari a 1 secondo.

L'acquisizione delle onde di Love è del tutto analoga a quelle di Rayleigh, cambia solo il tipo di sorgente e l'orientazione dei geofoni orizzontali (asse perpendicolare allo stendimento per le Love e asse parallelo per le Rayleigh).

Figura 11.6. Stendimento sismico (a sinistra) e acquisizione HVSR (a destra).

L'energizzazione è stata effettuata in posizione esterna rispetto ai geofoni estremi con offsets pari a 2, 4, 6 e 8 m; per le onde di Rayleigh si è utilizzata una mazza battente di 8 kg ad impatto verticale su piastra metallica, per quelle di Love una mazza battente ad impatto di taglio su piastra in polipropilene.

Le acquisizioni utili ad analizzare il rapporto spettrale H/V (HVSR) sono state eseguite utilizzando lo strumento SR04-GEOBOX, dotato di sensore a 2.0 Hz (Sara electronic instruments). L'analisi dei dati acquisiti è stata eseguita utilizzando il software WINMASW 5.2 versione Professional.

ANALISI RAYLEIGH + LOVE

Figura 11.7.Acquisizione della componente orizzontale delle onde Rayleigh (RVF) e delle onde di Love (THF). Sulla sinistra le tracce sismiche acquisite (sismogramma), sulla destra gli spettri di velocità.

Successivamente alla pulizia del dato si è proceduto alla modellazione diretta delle curve di dispersione ottenendo le curve riportate di seguito. Da notare come allo spettro di velocità osservato siano state sovrapposte tramite la tecnica della modellazione diretta le curve di dispersione, dei primi 2 modi per le onde di Rayleigh e del fondamentale per le onde di Love. Si evidenzia come lo spettro in onde Rayleigh non mostra chiaramente il modo fondamentale (accade spesso in siti caratterizzati da una copertura superficiale sopra ad un *bedrock* roccioso).

Figura 11.8. Spettri di velocità con sovrapposte le curve di dispersione dei principali modi riconosciuti.

Nella figura successive si riporta lo spettro d'ampiezza medio delle 3 componenti (NS, EW e verticale) ed i valori HVSR per l'acquisizione eseguita.

Figura 11.9. Spettri d'ampiezza medi delle 3 componenti (NS, EW e verticale) e valori di HVSR.

Figura 11.10.HVSR: in verde le misure effettuate, in magenta la curva HVSR modellata tramite ellitticità delle onde di superficie (Lunedei & Albarello, 2009). Il modello è chiaramente lo stesso usato per l'analisi delle onde di superficie.

033028L26MASW57_MASW26_loc. CARIGNONE

ACQUISIZIONE ED ELABORAZIONE DEI DATI

STRUMENTAZIONE

L'acquisizione dei dati è stata eseguita tramite l'utilizzo di un sismografo 24 canali (modello Echo 2002) collegato a geofoni orizzontali aventi frequenza propria di 4.5 Hz.

È stato realizzato uno stendimento sismico lineare di lunghezza pari a 46 metri con spaziatura di 2 metri tra i 24 geofoni e tempo di acquisizione pari a 1 secondo.

L'acquisizione delle onde di Love è del tutto analoga a quelle di Rayleigh, cambia solo il tipo di sorgente e l'orientazione dei geofoni orizzontali (asse perpendicolare allo stendimento per le Love e asse parallelo per le Rayleigh).

Figura 11.11 Stendimento sismico (a sinistra) e acquisizione HVSR (a destra).

L'energizzazione è stata effettuata in posizione esterna rispetto ai geofoni estremi con offsets pari a 2, 4, 6 e 8 m; per le onde di Rayleigh si è utilizzata una mazza battente di 8 kg ad impatto verticale su piastra metallica, per quelle di Love una mazza battente ad impatto di taglio su piastra in polipropilene.

Le acquisizioni utili ad analizzare il rapporto spettrale H/V (HVSR) sono state eseguite utilizzando lo strumento SR04-GEOBOX, dotato di sensore a 2.0 Hz (Sara electronic instruments). L'analisi dei dati acquisiti è stata eseguita utilizzando il software WINMASW 5.2 versione Professional.

ANALISI RAYLEIGH + LOVE

Figura 11.12. Acquisizione della componente orizzontale delle onde Rayleigh (RVF) e delle onde di Love (THF). Sulla sinistra le tracce sismiche acquisite (sismogramma), sulla destra gli spettri di velocità.

Successivamente alla pulizia del dato si è proceduto alla modellazione diretta delle curve di dispersione ottenendo le curve riportate di seguito. Da notare come allo spettro di velocità osservato siano state sovrapposte tramite la tecnica della modellazione diretta le curve di dispersione, dei primi 2 modi per le onde di Rayleigh e del modo fondamentale per le onde di Love.

Figura 11.13. Spettri di velocità con sovrapposte le curve di dispersione dei principali modi riconosciuti.

Nella figura successive si riporta lo spettro d'ampiezza medio delle 3 componenti (NS, EW e verticale) ed i valori HVSR per l'acquisizione eseguita.

Figura 11.14.Spettri d'ampiezza medi delle 3 componenti (NS, EW e verticale) e valori di HVSR.

Figura 11.15.HVSR: in verde le misure effettuate, in magenta la curva HVSR modellata tramite ellitticità delle onde di superficie (Lunedei & Albarello, 2009). Il modello è chiaramente lo stesso usato per l'analisi delle onde di superficie.

033028L27MASW58_MASW27_loc. CASE MALVISI

ACQUISIZIONE ED ELABORAZIONE DEI DATI

STRUMENTAZIONE

L'acquisizione dei dati è stata eseguita tramite l'utilizzo di un sismografo 24 canali (modello Echo 2002) collegato a geofoni orizzontali aventi frequenza propria di 4.5 Hz.

È stato realizzato uno stendimento sismico lineare di lunghezza pari a 46 metri con spaziatura di 2 metri tra i 24 geofoni e tempo di acquisizione pari a 1 secondo.

L'acquisizione delle onde di Love è del tutto analoga a quelle di Rayleigh, cambia solo il tipo di sorgente e l'orientazione dei geofoni orizzontali (asse perpendicolare allo stendimento per le Love e asse parallelo per le Rayleigh).

Figura 11.16. Stendimento sismico (a sinistra) e acquisizione HVSR (a destra).

L'energizzazione è stata effettuata in posizione esterna rispetto ai geofoni estremi con offsets pari a 2, 4, 6 e 8 m; per le onde di Rayleigh si è utilizzata una mazza battente di 8 kg ad impatto verticale su piastra metallica, per quelle di Love una mazza battente ad impatto di taglio su piastra in polipropilene.

Le acquisizioni utili ad analizzare il rapporto spettrale H/V (HVSR) sono state eseguite utilizzando lo strumento SR04-GEOBOX, dotato di sensore a 2.0 Hz (Sara electronic instruments). L'analisi dei dati acquisiti è stata eseguita utilizzando il software WINMASW 5.2 versione Professional.

ANALISI RAYLEIGH + LOVE

Figura 11.17. Acquisizione della componente orizzontale delle onde Rayleigh (RVF) e delle onde di Love (THF). Sulla sinistra le tracce sismiche acquisite (sismogramma), sulla destra gli spettri di velocità.

Successivamente alla pulizia del dato si è proceduto alla modellazione diretta delle curve di dispersione ottenendo le curve riportate di seguito. Da notare come allo spettro di velocità osservato siano state sovrapposte tramite la tecnica della modellazione diretta le curve di dispersione, dei primi 3 modi per le onde di Rayleigh e del modo fondamentale per le onde di Love.

Figura 11.18.Spettri di velocità con sovrapposte le curve di dispersione dei principali modi riconosciuti.

Nella figura successive si riporta lo spettro d'ampiezza medio delle 3 componenti (NS, EW e verticale) ed i valori HVSR per l'acquisizione eseguita.

Figura 11.19.Spettri d'ampiezza medi delle 3 componenti (NS, EW e verticale) e valori di HVSR.

Figura 11.20. HVSR: in verde le misure effettuate, in magenta la curva HVSR modellata tramite ellitticità delle onde di superficie (Lunedei & Albarello, 2009). Il modello è chiaramente lo stesso usato per l'analisi delle onde di superficie.

033028L28MASW59_MASW28_loc.ROCCHETTA

ACQUISIZIONE ED ELABORAZIONE DEI DATI

STRUMENTAZIONE

L'acquisizione dei dati è stata eseguita tramite l'utilizzo di un sismografo 24 canali (modello Echo 2002) collegato a geofoni orizzontali aventi frequenza propria di 4.5 Hz.

È stato realizzato uno stendimento sismico lineare di lunghezza pari a 46 metri con spaziatura di 2 metri tra i 24 geofoni e tempo di acquisizione pari a 1 secondo.

L'acquisizione delle onde di Love è del tutto analoga a quelle di Rayleigh, cambia solo il tipo di sorgente e l'orientazione dei geofoni orizzontali (asse perpendicolare allo stendimento per le Love e asse parallelo per le Rayleigh).

Figura 11.21. Stendimento sismico (a sinistra) e acquisizione HVSR (a destra).

L'energizzazione è stata effettuata in posizione esterna rispetto ai geofoni estremi con offsets pari a 2, 4, 6 e 8 m; per le onde di Rayleigh si è utilizzata una mazza battente di 8 kg ad impatto verticale su piastra metallica, per quelle di Love una mazza battente ad impatto di taglio su piastra in polipropilene.

Le acquisizioni utili ad analizzare il rapporto spettrale H/V (HVSR) sono state eseguite utilizzando lo strumento SR04-GEOBOX, dotato di sensore a 2.0 Hz (Sara electronic instruments). L'analisi dei dati acquisiti è stata eseguita utilizzando il software WINMASW 5.2 versione Professional.

ANALISI RAYLEIGH + LOVE

Figura 11.22. Acquisizione della componente orizzontale delle onde Rayleigh (RVF) e delle onde di Love (THF). Sulla sinistra le tracce sismiche acquisite (sismogramma), sulla destra gli spettri di velocità.

Successivamente alla pulizia del dato si è proceduto alla modellazione diretta delle curve di dispersione ottenendo le curve riportate di seguito. Da notare come allo spettro di velocità osservato siano state sovrapposte tramite la tecnica della modellazione diretta le curve di dispersione, dei primi 5 modi per le onde di Rayleigh e dei primi 4 le onde di Love.

Figura 11.23. Spettri di velocità con sovrapposte le curve di dispersione dei principali modi riconosciuti.

Nella figura successive si riporta lo spettro d'ampiezza medio delle 3 componenti (NS, EW e verticale) ed i valori HVSR per l'acquisizione eseguita.

Figura 11.24.Spettri d'ampiezza medi delle 3 componenti (NS, EW e verticale) e valori di HVSR.

Figura 11.25.HVSR: in verde le misure effettuate, in magenta la curva HVSR modellata tramite ellitticità delle onde di superficie (Lunedei & Albarello, 2009). Il modello è chiaramente lo stesso usato per l'analisi delle onde di superficie.

11.2 Prove sismiche tipo HVSR

- Peak HVSR value: 2.4 (±0.2)
- #1. [f0 > 10/Lw]: 10.1 > 0.5 (OK)
- #2. [nc > 200]: 23946 > 200 (OK)
- #3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK)
- === Criteria for a clear H/V peak (at least 5 should be fullfilled) ====
- #1. [exists f- in the range [f0/4, f0] | AH/V(f-) < A0/2]: (NO)
- #2. [exists f+ in the range [f0, 4f0] | AH/V(f+) < A0/2]: (NO)
- #3. [A0 > 2]: 2.4 > 2 (OK)
- #4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK)
- #5. [sigmaf < epsilon(f0)]: 3.620 > 0.507 (NO)
- #6. [sigmaA(f0) < theta(f0)]: 0.200 < 1.58 (OK)

Peak frequency (Hz): 4.1 (±0.4)

Peak HVSR value: 1.9 (±0.3)

- #1. [f0 > 10/Lw]: 4.1 > 0.5 (OK)
- #2. [nc > 200]: 8196 > 200 (OK)
- #3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK)

- #1. [exists f- in the range [f0/4, f0] | AH/V(f-) < A0/2]: (NO)
- #2. [exists f+ in the range [f0, 4f0] | AH/V(f+) \leq A0/2]: (NO)
- #3. [A0 > 2]: 1.9 < 2 (NO)
- #4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK)
- #5. [sigmaf < epsilon(f0)]: 0.400 > 0.207 (NO)
- #6. [sigmaA(f0) < theta(f0)]: 0.265 < 1.58 (OK)

033028P84HVSR87_HV04

Località: i Rabbini Data acquisizione: 11/01/2012

Strumento: sismografo SR04-GEOBOX Sensore 2.0 Hz Software elaborazione: WINMASW 5.2 Professional Durata registrazione: 20 minuti Frequenza campionamento: 300 Hz Lunghezza finestre: 20 secondi Tipo di lisciamento: triangolare Lisciamento: 20%

RELAZIONE ILLUSTRATIVA

RELAZIONE ILLUSTRATIVA

Peak frequency (Hz): 4.1 (±2.3) Peak HVSR value: 3.6 (±0.3) === Criteria for a reliable H/V curve == #1. [f0 > 10/Lw]: 4.1 > 0.66667 (OK) #2. [nc > 200]: 9810 > 200 (OK) #3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK) === Criteria for a clear H/V peak (at least 5 should be fullfilled) = #1. [exists f- in the range [f0/4, f0] | AH/V(f-) < A0/2]: yes, at frequency 1.2Hz (OK) #2. [exists f+ in the range [f0, 4f0] | AH/V(f+) < A0/2]: (NO) #3. [A0 > 2]: 3.6 > 2 (OK) #4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (NO) #5. [sigmaf < epsilon(f0)]: 2.349 > 0.207 (NO) #6. [sigmaA(f0) < theta(f0)]: 0.315 < 1.58 (OK) Peak frequency (Hz): 14.1 (±3.4) Peak HVSR value: 7.8 (±2.4) === Criteria for a reliable H/V curve = #1. [f0 > 10/Lw]: 14.1 > 0.5 (OK) #2. [nc > 200]: 30823 > 200 (OK) #3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK) === Criteria for a clear H/V peak (at least 5 should be fullfilled) == #1. [exists f- in the range [f0/4, f0] | $AH/V(f-) \le A0/2$]: yes, at frequency 12.9Hz (OK) #2. [exists f+ in the range [f0, 4f0] | AH/V(f+) < A0/2]: yes, at frequency 18.7Hz (OK) #3. [A0 > 2]: 7.8 > 2 (OK) #4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK) #5. [sigmaf < epsilon(f0)]: 3.400 > 0.707 (NO) #6. [sigmaA(f0) < theta(f0)]: 2.394 < 1.58 (NO)

Peak frequency (Hz): 3.4 (±1.1)

Peak HVSR value: 2.7 (±0.4)	
=== Criteria for a reliable H/V curve ====================================	
#1. [f0 > 10/Lw]: $3.4 > 0.666667$ (OK)	
#2. [nc > 200]: 7987 > 200 (OK)	
#3. [f0>0.5Hz; sigmaA(f) < 2 for $0.5f0 < f < 2f0$] (OK)	
==== Criteria for a clear H/V peak (at least 5 should be fullfilled) ====================================	
#1. [exists f- in the range [f0/4, f0] AH/V(f-) \leq A0/2]: (NO)	
#2. [exists f+ in the range [f0, 4f0] AH/V(f+) < A0/2]: (NO)	
#3. [A0 > 2]: 2.7 > 2 (OK)	
#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (NO)	
#5. [sigmaf < epsilon(f0)]: 1.144 > 0.168 (NO)	
#6. [sigmaA(f0) < theta(f0)]: 0.452 < 1.58 (OK)	
Peak frequency (Hz): 7.8 (±1.2)	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5)	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) Criteria for a reliable H/V curve	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) === Criteria for a reliable H/V curve ====================================	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) === Criteria for a reliable H/V curve ====================================	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) === Criteria for a reliable H/V curve ====================================	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) Criteria for a reliable H/V curve	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) Criteria for a reliable H/V curve	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) Criteria for a reliable H/V curve #1. [f0 > 10/Lw]: 7.8 > 0.66667 (OK) #2. [nc > 200]: 18404 > 200 (OK) #3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK) Criteria for a clear H/V peak (at least 5 should be fullfilled) #1. [exists f- in the range [f0/4, f0] AH/V(f-) < A0/2]: (NO) #2. [exists f+ in the range [f0, 4f0] AH/V(f+) < A0/2]: (NO)	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) 	
Peak frequency (Hz): 7.8 (±1.2) Peak HVSR value: 3.2 (±0.5) Criteria for a reliable H/V curve	
Peak frequency (Hz): 7.8 (\pm 1.2) Peak HVSR value: 3.2 (\pm 0.5) 	

Peak frequency (Hz): 26.1 (±4.5)

Peak frequency (Hz): 4.2 (±4.6)

Peak HVSR value: 1.8 (±0.6)

#1. [f0 > 10/Lw]: 26.1 > 0.5 (OK)

#2. [nc > 200]: 61637 > 200 (OK)

#3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK)

=== Criteria for a clear H/V peak (at least 5 should be fullfilled) ======

#1. [exists f- in the range [f0/4, f0] \mid AH/V(f-) \leq A0/2]: (NO)

#2. [exists f+ in the range [f0, 4f0] \mid AH/V(f+) \leq A0/2]: (NO)

#3. [A0 > 2]: 1.8 < 2 (NO)

#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (NO)

- #5. [sigmaf < epsilon(f0)]: 4.483 > 1.306 (NO)
- #6. [sigmaA(f0) < theta(f0)]: 0.599 < 1.58 (OK)

Peak frequency (Hz): 8.1 (±0.6)

#3. [A0 > 2]: 2.2 > 2 (OK)

Peak frequency (Hz): 2.3 (±0.2)

- #4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK)
- #5. [sigmaf < epsilon(f0)]: 1.176 > 0.273 (NO)
- #6. [sigmaA(f0) < theta(f0)]: 0.225 < 1.58 (OK)

033028P105HVSR108_HV25_eseguito per la MZS Località: San Michele Data acquisizione: 11/05/2013 Strumento: sismografo SR04-GEOBOX Sensore 2.0 Hz Software elaborazione: WINMASW 5.2 Professional Durata registrazione: 20 minuti Frequenza campionamento: 300 Hz Lunghezza finestre: 20 secondi Tipo di lisciamento: triangolare Lisciamento: 20% RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE MT₂0130715₁25427.SAF - HVSR (window length: 20s) 4 3.5 2. 1.3 0 10 10 10 frequency (Hz) SERIE TEMPORALE SINGOLE COMPONENTI SERIE TEMPORALE H/V HVSR vs time vertical component (logarithm) 10² frequency (Hz) 0 E 10¹ frequency 10⁰ 6 8 10 12 14 time (min) NS component (logarithm) 2 4 14 16 18 frequency (Hz) 00 10 10 time (min) 12 14 16 DIREZIONALITÀ H/V 6 8 10 12 14 time (min) EW component (logarithm) 2 14 16 18 4 frequency (Hz) 0 HVSR: directivity 10 10 14 16 18 6 8 12 (2H) H 10° time (min) 100 Azimuth (degree)

Peak frequency (Hz): 10.4 (±1.6)
Peak HVSR value: 2.6 (±0.2)
=== Criteria for a reliable H/V curve ====================================
#1. [f0 > 10/Lw]: 10.4 > 0.66667 (OK)
#2. [nc > 200]: 24742 > 200 (OK)
#3. [f0>0.5Hz; sigmaA(f) < 2 for $0.5f0 < f < 2f0$] (OK)
=== Criteria for a clear H/V peak (at least 5 should be fullfilled) ====================================
#1. [exists f- in the range [f0/4, f0] AH/V(f-) < A0/2]: (NO)
#2. [exists f+ in the range [f0, 4f0] \mid AH/V(f+) $<$ A0/2]: yes, at frequency 14.5Hz (OK)
#3. [A0 > 2]: 2.6 > 2 (OK)
#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK)
#5. [sigmaf < epsilon(f0)]: 1.610 > 0.522 (NO)
#6. [sigmaA(f0) < theta(f0)]: 0.216 < 1.58 (OK)
Peak frequency (Hz): 4.4 (±0.9)
Peak HVSR value: 2.6 (±0.4)
=== Criteria for a reliable H/V curve ====================================
#1. [f0 > 10/Lw]: 4.4 > 0.66667 (OK)
#2. [nc > 200]: 10418 > 200 (OK)
#3. [f0>0.5Hz; sigmaA(f) < 2 for $0.5f0 < f < 2f0$] (OK)
=== Criteria for a clear H/V peak (at least 5 should be fullfilled) ====================================
#1. [exists f- in the range [f0/4, f0] AH/V(f-) < A0/2]: (NO)
#2. [exists f+ in the range [f0, 4f0] AH/V(f+) < A0/2]: (NO)
#3. [A0 > 2]: 2.6 > 2 (OK)
#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (NO)
#5. [sigmaf < epsilon(f0)]: 0.947 > 0.220 (NO)
#6. [sigmaA(f0) < theta(f0)]: 0.361 < 1.58 (OK)

033028P108HVSR111_HV28_eseguito per la MZS

Località: Malvisi Data acquisizione: 16/05/2013

> 100 Azimuth (degree)

Strumento: sismografo SR04-GEOBOX Sensore 2.0 Hz Software elaborazione: WINMASW 5.2 Professional Durata registrazione: 20 minuti Frequenza campionamento: 300 Hz Lunghezza finestre: 20 secondi Tipo di lisciamento: triangolare Lisciamento: 20%

In the following the results considering the data in the 3.0-20.0Hz frequency range
Peak frequency (Hz): 17.9 (±4.1)
Peak HVSR value: 3.2 (±0.5)
== Criteria for a reliable H/V curve ====================================
=== Criteria for a clear H/V peak (at least 5 should be fullfilled) ====================================
#1. [exists f- in the range [f0/4, f0] AH/V(f-) < A0/2]: yes, at frequency 11.2Hz (OK)
#2. [exists f+ in the range [f0, 4f0] AH/V(f+) < A0/2]: (NO)
#3. [A0 > 2]: 3.2 > 2 (OK)
#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK)
#5. [sigmaf < epsilon(f0)]: 4.110 > 0.896 (NO)
#6. [sigmaA(f0) < theta(f0)]: $0.550 < 1.58$ (OK)
RELAZIONE ILLUSTRATIVA

RELAZIONE ILLUSTRATIVA

11.3 Sezioni Geologiche

<u>I Rabbini</u>

<u>La Costa</u>

<u>Case di Olza</u>

<u>San Michele</u>

<u>Carignone</u>

<u>Case Malvisi</u>

<u>Levei-Chiavarini</u>

<u>Rocchetta</u>

<u>Morfasso</u>

<u>Cornolo</u>

<u>Pedina</u>

<u>Casali</u>

<u>Rusteghini</u>

<u>Teruzzi</u>

11.4 Rilievi geomeccanici

033028P112GE0115

RG01	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: la Costa	185N/28	2,4	20
Data: 10/05/2013			20
Affioramento: BET			22
	-1	Maria Maria	24
	and the first		30
			35
and a second of the second sec	A CONTRACTOR	Provide States	48
		Contraction of the second	50 <mark>-</mark>
	the state of the	and a second second	50
			55
		-	
the second second			
	15 - 15 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		

033028P113GE0116

RG02	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: C. Malvisi	-	Disgregato e fratturato	18
Data: 10/05/2013		impossibile eseguire	20
Affioramento: VLU1		conteggio discontinuita.	25
	A CONTRACTOR	AN AND	26
SELECTION OF	The State of the second		28
	A PARA AN	SAS MARCE	38
	REEDAN		45
A ANY COMPANY		CRASSIN N/	
27-14 A. 1-1			
	MARCH AND		
	AN COMPANY		
	A STREET		
	STA A	1/2000	
	13 7 5 4 2 ·	Although Strates	
	Toron and and	Real March	

033028P114GE0117

RG03	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Teruzzi	50N/15	10,5	15
Data: 10/05/2013			28
Affioramento: BET			30
	at in the		36
	A A A A A A A A A A A A A A A A A A A		46
			50
			60
	a to the the		
		N CLEAR	
and the second s	STY BALL		
A A A A A A A A A A A A A A A A A A A	THE REAL		
and the states	And The state		
AND THE PARTY OF			
The second se		Strate Contraction	

033028P115GE0118

RG04	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Casali	140N/25	5,5	10
Data: 10/05/2013			10
Affioramento: MCS			12
			12
		Actor of the	26
	The second		30
NI CONE			32
~ 图 教育	OTA		40
	N Long		47
		Market Co	52
	1-1-1-20	20012	56
and the second second			
		4	
A The Aller And Aller	in the second	2 E MA	
	The start - Sta		
The second second			

033028P116GE0119

RG05	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Casali	20N/5	10,1	30
Data: 11/05/2013			36
Affioramento: MCS			36
	and states and the		38
	a sealer and		42
			52
		新作家良好を入	53
	and the second		
	A SACT		
- July Shinks	Carl and the set	TA MARKA	
	TT ROLLARS	Carlos IZS	
	and the second of		
	and the second second		
		A MARKEN	
and the second second			

033028P117GE0120

RG06	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Casali	-	Disgregato e fratturato	14
Data: 11/05/2013		impossibile eseguire	16
Affioramento: SCB		conteggio discontinuita.	20
		and the second	20
Martin Constant			22
A CONTRACTOR OF A CONTRACTOR O			32
A CARLES OF CARLES OF CARLES		and the second	40
- Zer Barris		STREET, SAL	
The loss in the second second	A State of the sta	STAMPS &	
A TAKE PRIME STANK			
States and the second	Contraction of the	ALL TRACES	
	Calminster Bern	SHICK DESTROY	
and the second	Committee and a series	A CONTRACTOR OF THE OWNER	
	and a set		

033028P118GE0121

RG07	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Pedina	240N/90	Livelli calcarei stratificati alternati a	40
Data: 11/05/2013		marnosi sono piegati. I valori ricavati	46
Affioramento: APA		determinati sui livelli calcarei.	50
CLE ASS / SASSAR			54
	CAN LO AN		
NOT TAKEN AND		a support	
多。1790年1月20日。1897年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月2日 1997年1月21日 1997 1997年1月21日 1997 1997 1997 1997 1997 1997 1997 19	A A		
A CARLES AND		Concerta #	
Low Martin States	Sal 1 - 2		
	AL IN		
		Compare As	
		At a start of	
四次下了第月 皇太阳盛广	Contraction of the second	The second	
	A CARLEN AND		
and the second		TEXA SHE WAS A	

033028P119GE0122

RG08	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Rusteghini	230N/16	11,5	10
Data: 11/05/2013			10
Affioramento: BET			20
			20
		the the	32
	Company to the Same	Mar Martin	38
			42
Contraction of the second s	TABLE &	Stand 1	
		the second	
The second second	LASIA D	ST SHA	
A THE PERSON AND A THE	E E E E E	A CONTRACT	
		アリー	
	TO THE T	A LO	
	Service C		
	PLACE AL		

033028P120GE0123

RG09	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Rocchetta	140N/37	Fuetture unessed (30
Data: 11/05/2013		Fratture pressocne	32
Affioramento: FAR2			36
Salar and and a state			38
1 1 1			40
	A Cast De		
	Martin La	and the second	
HETTA	All Follow	an and product	
	1 and the		
	and the	1 3 6 7 1	
	Jores 1 1 1 1	A THE STATE	
	A		
	A all		
	Martin Contraction	Star A Cont	
		A CONTRACTOR	
	Las selo	SPARAN CON	

033028P121GE0124

RG10	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Cornolo	190N/50	6,5	22
Data: 14/05/2013			24
Affioramento: BET			30
			34
the for the second	ALL TO	P.	40
Part Million			44
A BERT			52
	11 Parts		
1	1 Andrews	THE AVENT OF	
ALL AS A			
	As a fal		
		Martin The P	
A NAL TO THE AND	Marine Marine	Deale 1	
	AT BUS THE A	29-20 - Say	
		TO Y AND	

033028P122GE0125

RG11	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Levei	5N/20	Disgregato e fratturato,	
Data: 14/05/2013		impossibile eseguire conteggio discontinuità.	
Amoramento. 903			
KANDA KANG AN	March March	PASSION MANNER	
	SAS CULANNE	espections,	
		ABA	
COMPARING THE STATE	The state of the		
ANN MUNICIPALITY			
	A STATISTICS	BASIN	
	Largence Fill Mr.		
	La Parte Th	344CLAR MARA	

033028P123GE0126

RG12	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Olza	190N/60	Disgregato e fratturato	14
Data: 14/05/2013		impossibile eseguire	14
Affioramento: FAR2a		conteggio discontinuita.	16
	A STATE OF STATE	The second second	18
1		and the second	20
	a tal	Strate Strates	22
A CARLES AND A CARLES		131	24
	1.5		
	1 4 1		
		1 7 Est	
		and the second	
	La Jesse	A State State	
	A CON		
	Dell'Sold	A COLUMN	
and the second second	A Start Start	a set in the	
		Carles L	

033028P124GE0127

RG13	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: i Rabbini	310N/30	Livelli arenacei eterogenei, da molto a	14
Data: 14/05/2013		poco alterati. Non è stato	14
Affioramento: BET		conteggio discontinuità.	20
			24
120 1 × / 32 × 18/		A A A	30
		-	34
			38
		A States	42
			48
		A Carthe	50
		12 232	50
			60
	- AND		
	2: 10736		
	THE	Sel and	

033028P125GE0128

RG14	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: Levei	70N/25	10,0	20
Data: 14/05/2013			26
Affioramento: BET			42
			42
A A A A A A A A A A A A A A A A A A A			48
			50
			54
	a desta		54
		Carling and	54
			54
	1 - Cart	States -	56
	C LA MARKEN		58
Plant Tomas	A A A	A CAN	
		S. Starting	
M P C C C C C C C C C C C C C C C C C C	and the second s	and the second	

033028P126GE0129

RG15	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: San Michele	150N/20	5,9	14
Data: 14/05/2013			14
Affioramento: CCL			16
			20
		JAM-P	20
LESS AN PART		1 FAL	22
			32
		All A	40
		AN ISA DA	50
	A THE PARTY OF	ALC: HELLY	
	Marine Marine		
	the states		
all the set of the set of the		a cur	
	A MAY	and the second	
		and the states	
	W	A CARLON AND AND AND AND AND AND AND AND AND AN	

033028P127GE0130

RG16	Giacitura stratificazione	Stima discontinuità Jv (m ⁻¹)	Misura sclerometrica
Località: San Michele	150N/45	11,3	18
Data: 14/05/2013			20
Affioramento: VUL1			24
	742. 8000		26
		C Pressie	26
			32
			40
	A KARAN	CONTROL OF	42
A NO A		A A A	
	A A HAN	A CONSTRUCT	
PRIMA / AND A	All of		
		A Carlos and	
		P We way we	
	The set Day	A A A A A A	
		ALL BOOK	