

Attuazione dell'articolo 11 della legge 24 giugno 2009, n. 77

MICROZONAZIONE SISMICA Relazione illustrativa

Regione Emilia-Romagna Comune di Busseto

Regione

Emilia-Romagna

Soggetto realizzatore

ENGEO S.r.I.
ENGINEERING GEOLOGY
www.engeo.lt

Direzione tecnica

Dott. Geol. Carlo Caleffi Dott. Geol. Francesco Cerutti

Collaboratori

Dott. Geol. Matteo Baisi

Dott.ssa Geol. Alessandra Cantoni

Dott. Geol. Andrea Conti

Dott.ssa Geol. Melinda Raimondo

Data

Maggio 2022

MS3

INDICE

1.	Intro	oduzione		4
	1.1	Motiva	nzione dello studio di terzo livello	5
	1.2	Articol	azione dello studio	6
2.	Inda	gini ed a	nalisi	9
	2.1	•	penetrometriche con punta elettrica e piezocono	
	2.2		ne mediante sismocono	
	2.3	Rilievo	sismico HVSR mediante tromografo	15
3.	Anal	isi di risp	osta sismica locale	17
	3.1	Pericol	osità sismica di base	18
	3.2	Segnal	i in input	19
	3.3	Model	lo geofisico del sottosuolo	20
		3.3.1	Litologia	20
		3.3.2	Determinazione della V _s e del bedrock sismico	20
		3.3.3	Curve di variazione dello smorzamento (D) e della rigidezza (G/G_0) in funzion della deformazione	
	3.1	Proced	lura di analisi RSL	
		3.1.1	Metodo lineare equivalente	
		3.1.2	Soluzione alla singola iterazione mediante FEM	
		3.1.3	Smorzamento	
		3.1.4	Procedimento iterativo	31
		3.1.5	Interpretazione dei risultati	31
	3.2	Analisi	dei risultati	31
		3.2.1	Spettro di risposta elastico normalizzato	35
	3.3	Risulta	ti della modellazione numerica	37
		3.3.1	RSL per il sito "Scuole medie" (034007P95SCPT95)	37
		3.3.2	RSL per il sito "Istituto comprensivo" (034007P96SCPT96)	40
		3.3.3	RSL per il sito "Conad" 034007P97SCPT97	43
		3.3.4	RSL per il sito "Roncole Verdi" (034007P98SCPT98)	46
		3.3.5	RSL per il sito "San Rocco" 034007P99SCPT99	49
		3.3.6	RSL per il sito "Casa della Salute" (034007P92SCPT92)	52
	3.4	Consid	erazioni sui risultati delle analisi di terzo livello	55
		3.4.1	Ipotesi di bedrock a maggiori profondità	56
	3.5	Verifica	a del rischio di liquefazione	57
		3.5.1	Analisi dei risultati	62
4.	Critic	cità del n	netodo	65
	4.1	Consid	erazioni sul bedrock sismico	66

FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	2 di 80

5.	Elab	orati cart	tografici	68
	5.1	Carta c	delle indagini	69
	5.2	Carta c	delle frequenze naturali dei terreni	70
	5.3	Carta c	delle microzone omogenee in prospettiva sismica (MOPS)	71
		5.3.1	Zone stabili suscettibili di amplificazioni locali	72
		5.3.2	Zone di attenzione per instabilità	73
	5.4	Carta c	della velocità delle onde di taglio S	73
	5.5	Carte c	di microzonazione sismica	73
	5.6	Carte c	dello scuotimento atteso	75
6.	Bibli	ografia		77
7.	Alled	gati		80

EN GEO s.r.l.	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	3 di 80

1. Introduzione

Nella presente Relazione vengono descritte le attività svolte e i risultati ottenuti nel corso dello Studio di microzonazione sismica di terzo livello del Comune di Busseto, effettuato su incarico del Comune di Busseto (cfr. Determinazione n° 643 del 15/12/2021) e finanziato con contributi di cui alla Delibera di Giunta Regionale dell'Emilia-Romagna n. 1885 del 15/11/2021.

Gli studi di Microzonazione Sismica hanno l'obiettivo di razionalizzare le conoscenze in merito alle alterazioni che lo scuotimento sismico può subire in superficie e di fornire informazioni utili al governo del territorio, alla progettazione, alla pianificazione per l'emergenza e alla ricostruzione post sisma.

La MS consente di suddividere il territorio esaminato in base alla presenza e alla distribuzione dei fenomeni di possibile amplificazione dello scuotimento, legati alle caratteristiche litostratigrafiche e morfologiche delle singole aree considerate, e ai possibili fenomeni di instabilità e deformazione permanente attivati dal sisma. L'insieme di queste conoscenze sul comportamento dei terreni durante un evento sismico e sui possibili effetti indotti dallo scuotimento è un indispensabile strumento di prevenzione e di riduzione del rischio sismico, particolarmente efficace, se realizzato e applicato durante la pianificazione urbanistica, per indirizzare le scelte di trasformazione verso aree a minore pericolosità.

Tutte le attività svolte e in particolare l'elaborazione e la redazione degli elaborati richiesti, sono state effettuate nel rispetto dei seguenti riferimenti tecnici:

- Allegato A2 "Criteri per la realizzazione degli studi di Microzonazione Sismica e Analisi della Condizione Limite per l'Emergenza, di cui all'ordinanza del capo dipartimento della protezione civile n. 780/2021" della deliberazione di Giunta regionale n. 1885 del 15/11/2021 "OCDPC 20 maggio 2021, n. 780 Attuazione dell'art.2, comma 1, lett. a) e comma 2. Approvazione dei criteri per l'attribuzione, la concessione e la liquidazione di contributi e per la realizzazione e presentazione degli elaborati relativi a studi di Microzonazione Sismica e Analisi della Condizione Limite per l'Emergenza" (da qui in avanti "Allegato A2 della delibera regionale")
- "Microzonazione sismica Standard di rappresentazione e archiviazione informatica" -Versione 4.2, Roma, dicembre 2020 - Elaborato e approvato nell'ambito dei lavori della Commissione tecnica per la microzonazione sismica, nominata con DPCM 21 aprile 2011 (da qui in avanti "SRAI")
- "Indirizzi e criteri per la microzonazione sismica" approvati dal Dipartimento della Protezione Civile e dalla Conferenza delle Regioni e delle Province Autonome e successive modifiche e integrazioni (da qui in avanti "ICMS")
- Atto di coordinamento tecnico per gli studi di microzonazione sismica ai sensi della LR 24/2017 approvato con DGR 476/2021¹ e integrato con DGR 564/2021² (da qui in avanti "indirizzi regionali")

DGR 476/2021. Deliberazione della Giunta della Regione Emilia-Romagna n. 476 del 12 aprile 2021: Aggiornamento dell'"Atto di coordinamento tecnico sugli studi di microzonazione sismica per la pianificazione territoriale e urbanistica (artt. 22 e 49, LR 24/2017)" di cui alla deliberazione della Giunta Regionale 29 aprile 2019, n. 630. BURERT n. 111 del 20/04/2021 – Parte seconda n. 93.

² DGR 564/2021. Deliberazione della Giunta della Regione Emilia-Romagna n. 564 del 26 aprile 2021: Integrazione della propria deliberazione n. 476 del 12 aprile 2021 mediante approvazione dell'allegato A, "Atto di coordinamento tecnico sugli studi di microzonazione sismica per la pianificazione territoriale e urbanistica (artt. 22 e 49, L.R. n. 24/2017)". BURERT n. 137 del 12/05/2021 – Parte seconda n. 113.

EN GEO s.r.l.	Elaborato	Data	Agg.	Pag.
DECEMBER OF OTOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	4 di 80

Tali riferimenti tecnici, negli anni, sono stati soggetti a vari aggiornamenti che hanno comportato profonde modifiche, non solo nella metodologia di archiviazione dei dati e nella rappresentazione grafica dei differenti tematismi, ma anche di natura concettuale.

Quali aree oggetto di studio, sono state prese in esame le stesse porzioni di territorio urbanizzato indagate con l'approfondimento di secondo livello.

Nel corso dell'incarico sono stati redatti oltre alla presente relazione gli elaborati elencati nel capitolo 7.

Essi sono stati predisposti in versione digitale (pdf, con risoluzione 300 dpl).

I dati vengono forniti anche in formato vettoriale (*shapefile*) secondo quanto indicato nel punto "Indicazioni per l'archiviazione informatica, rappresentazione e fornitura dei dati degli studi di microzonazione sismica e dell'analisi della condizione limite per l'emergenza" dell'Allegato A2 della delibera regionale.

Per la loro archiviazione e l'editing dei documenti sono stati seguiti gli standard di riferimento più recenti disponibili nel sito web del Centro per la Microzonazione Sismica e le sue applicazioni: gli SRAI (Standard di Rappresentazione e Archiviazione Informatica), Versione 4.2.

L'inserimento dei dati alfanumerici dei siti, delle indagini e dei relativi parametri è stato effettuato tramite l'utilizzo dell'apposito software: "MS – SoftMS" nella versione 4.2.

1.1 Motivazione dello studio di terzo livello

Il Comune di Busseto è già dotato di uno studio di microzonazione sismica di secondo livello di approfondimento, redatto da Ambiter s.r.l., conforme agli "Indirizzi e criteri per la microzonazione sismica" e agli "Standard di rappresentazione e archiviazione informatica", secondo quanto previsto dall'OCDPC 171/2014, così come certificato dalla Commissione Tecnica per il monitoraggio degli studi di microzonazione sismica (ai sensi dell'OPCM 3907/2010, art. 5, comma 7) e attestato dalla Regione Emilia Romagna con nota prot. PG/ 2019/0839315 del 12/11/2019.

Come indicato nel capitolo 5 della Relazione illustrativa, tale studio ha consentito di formulare le seguenti considerazioni:

- 1. Il territorio del comune di Busseto si colloca nel bacino sedimentario della pianura padana e la natura e lo spessore dei depositi alluvionali che contrassegnano il profilo stratigrafico determinano condizioni di amplificazione dell'accelerazione sismica sia verticale che orizzontale in caso di terremoto.
- 2. Le indagini geognostiche e geofisiche disponibili e realizzate ex novo per il presente Studio di Microzonazione Sismica hanno portato alla suddivisione delle aree urbanizzate e di futura urbanizzazione in 2 microzone omogenee in prospettiva sismica.
- 3. Le indagini geofisiche evidenziano, in termini di frequenze naturali del sottosuolo e di velocità delle onde di taglio nei primi 30 metri di profondità, condizioni di omogeneità da nord a sud e da est a ovest, all'interno dell'intero territorio comunale.
- 4. Gli studi effettuati confermano il rischio di amplificazione sismica di tipo stratigrafico in tutto il territorio comunale.

EN GEO s.r.l.	Elaborato	Data	Agg.	Pag.
DECEMBER OF OTOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	5 di 80

- 5. In considerazione dell'assetto litostratigrafico ricostruito, il territorio comunale di Busseto è stato considerato assimilabile all'ambiente "Pianura 2" previsto nell'Allegato A2 della Delibera della Giunta della Regione Emilia-Romagna 2193/2015.
- 6. In relazione ai valori di Vs30 registrati dalle indagini MASW e ReMi disponibili, è stato possibile calcolare (tramite l'utilizzo degli abachi dell'allegato A2.1.2 degli Indirizzi Regionali) valori dell'amplificazione in termini di PGA pari a circa 1.6 1.7 in tutto il territorio comunale.
- 7. Per quanto riguarda le frequenze fondamentali del terreno, tramite le rilevazioni dei microtremori è stato possibile riscontrare valori generalmente ricompresi nell'intervallo 0,6-1 Hz.
- 8. In relazione all'assetto altimetrico e alla morfologia sub-pianeggiante delle aree considerate, non sono possibili effetti di amplificazione locale dovuti all'assetto topografico.
- 9. In considerazione della ridotta soggiacenza della falda lungo tutto il territorio comunale, della presenza diffusa di depositi sabbiosi a partire dalle profondità di circa 5-10 metri da p.c. e della magnitudo massima attesa (Mwmax2 = 6,14), sono possibili fenomeni di liquefazione dei terreni.
- 10. Per quanto indicato al punto 9, le microzone omogenee in prospettiva sismica individuate dal presente Studio sono state classificate come Zone di attenzione per instabilità per possibili fenomeni di liquefazione. Per tali aree si ritengono necessari approfondimenti di terzo livello.

Dunque, scopo di questo lavoro è la valutazione dell'effettivo grado di pericolosità derivante dai fenomeni di liquefazione dei terreni, quantificato tramite l'"Indice Potenziale di Liquefazione" LPI, attribuito a tutte le verticali oggetto di verifica.

Contestualmente, per migliorare il quadro delle conoscenze locali, si è ritenuto opportuno effettuare anche delle analisi della Risposta Sismica Locale, in corrispondenza di alcune situazioni stratigrafiche tipo, così da verificare la validità del modello interpretativo e consentire delle valutazioni circa la vulnerabilità sismica del patrimonio edilizio esistente.

Per quanto non trattato nel presente approfondimento (in particolare: evoluzione della classificazione sismica, sismicità storica, assetto strutturale e stratigrafico generale, con relative sezioni, Carta geologico tecnica per la microzonazione sismica), si rimanda agli elaborati dello studio di secondo livello.

1.2 Articolazione dello studio

Lo studio di microzonazione di terzo livello è consistito pertanto nelle seguenti fasi:

- 1. pianificazione della nuova campagna d'indagini;
- 2. realizzazione di n° 5 prove penetrometriche statiche con punta elettrica, piezocono e cono sismico fino a -30 m da p.c. o a rifiuto, finalizzate all'effettuazione di analisi di Risposta Sismica Locale e alla valutazione del potenziale rischio di liquefazione;
- 3. realizzazione di n° 10 prove penetrometriche statiche con punta elettrica e piezocono, per la valutazione del potenziale rischio di liquefazione;

EN GEO S.r.I.	Elaborato	Data	Agg.	Pag.
DECEMBERRA OLOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	6 di 80

- 4. realizzazione di n° 15 prove HVSR per la determinazione della frequenza caratteristica del terreno in corrispondenza delle aree urbanizzate individuate dal precedente studio di 2° livello;
- 5. raccolta di ulteriori dati disponibili presso gli scriventi relativi a:
 - Prove SCPTU (n° 1 per analisi RSL e per le verifiche a liquefazione);
 - Prove CPTU (n° 2 per le verifiche a liquefazione);
- 6. aggiornamento, con i dati delle nuove indagini, delle seguenti cartografie di primo e secondo livello:
 - · Carta delle indagini;
 - Carta delle frequenze naturali dei terreni;
 - Carta delle microzone omogenee in prospettiva sismica (MOPS);
 - Carta delle velocità delle onde di taglio S (V_s);
- valutazione della riposta sismica locale in n° 6 siti in cui si riteneva di poter disporre di sufficienti dati per la definizione del modello geofisico del sottosuolo. L'elaborazione della RSL è stata realizzata mediante codice di calcolo LSR 2D (Local Sismic Response 2D) Ver. 5.0 di STACEC;
- 8. calcolo dei fattori di amplificazione, per i n° 6 siti indagati, per un tempo di ritorno TR=475 anni, con smorzamento ζ=5%, relativi ai seguenti parametri rappresentativi dello scuotimento sismico:
 - FA_{PGA} = PGA/PGA₀, dove PGA₀ è l'accelerazione massima orizzontale a periodo T=0 al suolo di riferimento e PGA e l'accelerazione massima orizzontale a periodo T=0 alla superficie del sito;
 - FA_{SA} = SA/SA₀, dove SA₀ è l'integrale dello spettro di risposta in accelerazione al suolo di riferimento e SA è l'integrale dello spettro di risposta in accelerazione alla superficie del sito per prefissati intervalli di periodi T:
 - o SA1 per 0,1s≤T≤0,5s,
 - o SA2 per 0,4s≤T≤0,8s,
 - o SA3 per 0,7s≤T≤1,1s,
 - o SA4 per 0,5s≤T≤1,5s;
 - FH_{SI} = SI/SI₀, dove SI₀ è l'integrale dello spettro di risposta in velocità (Intensità di *Housnei*) al suolo di riferimento e SI l'integrale dello spettro di risposta in velocita (o corrispondente grandezza di Intensità di *Housnei*) alla superficie del sito per prefissati intervalli di periodi T:
 - o SI1 per 0,1s≤T≤0,5s,
 - o SI2 per 0,5s≤T≤1,0s,
 - o SI3 per 0,5s≤T≤1,5s.
- 9. Redazione delle cartografie di microzonazione sismica Livello 3 relative agli 8 parametri indicati al punto precedente, oltre che allo scuotimento in accelerazione (cm/s²) atteso al sito per gli intervalli di periodi:

EN GEO s.r.l.	Elaborato	Data	Agg.	Pag.
INCOMPLETING OFFICE	MS 3 - Relazione illustrativa	Luglio 2022	1	7 di 80

- o 0,1s≤T≤0,5s (cfr. Carta di microzonazione sismica H_{SM}),
- o 0,4s≤T≤0,8s (cfr. Carta di microzonazione sismica H_{SM 0,4-0,8 s}),
- o 0,7s≤T≤1,1s (cfr. Carta di microzonazione sismica HSM 0,7-1,1 s),
- o 0,5s≤T≤1,5s (cfr. Carta di microzonazione sismica H_{SM 0,5-1,5 s}),

10. Verifiche a liquefazione su n° 18 verticali.

Alle luce delle nuovo indagini realizzate non è stato necessario modificare la carta GeoTec realizzata per studio MS1 e MS2 (OCDPC 171/2014) e pertanto la carta di riferimento è ancora quella prodotta nello studio precedente, redatto da Ambiter Srl.

EN GEO S.c.l.	Elaborato	Data	Agg.	Pag.
INCOMPLETING OFFICE	MS 3 - Relazione illustrativa	Luglio 2022	1	8 di 80

2. INDAGINI ED ANALISI

Di seguito vengono descritte le indagini specifiche effettuate per la microzonazione di III livello, la cui ubicazione è rappresentata graficamente in Fig. 1, oltre che nella Carta delle indagini alla scala 1:5'000.

I punti di indagine sono stati individuati, in accordo con i Tecnici del Comune, tenendo ovviamente conto dell'approfondimento di secondo livello.

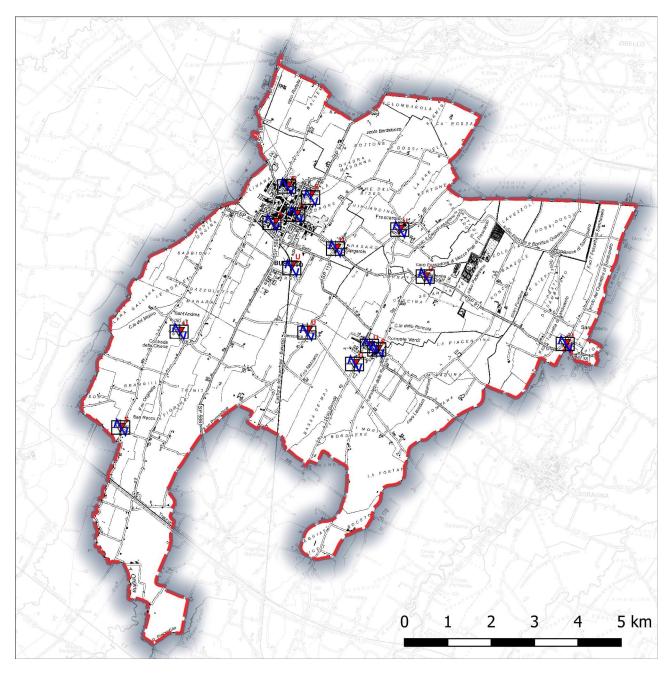


Fig. 1 - Ubicazione delle indagini effettuate per l'analisi di 3° livello

EN GEO S.c.I.	Elaborato	Data	Agg.	Pag.
ENGLESING BEOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	9 di 80

2.1 Prove penetrometriche con punta elettrica e piezocono

Nel corso della campagna d'indagine, sono state eseguite, da parte della ditta SOCOTEC s.a.s. di Ferrara, n° 15 prove penetrometriche statiche con punta elettrica e piezocono (cfr. All. 18), n° 5 delle quali attrezzate con cono sismico (cfr. paragrafo 2.2). Le indagini sono state eseguite utilizzando un penetrometro GeoMill da 200 kN di spinta massima con punta Tecnopenta G1-CPL2IN, montato su autocarro Mercedes Unimog 4 X 4.

Ciascuna prova è consistita nella misura della resistenza alla penetrazione di una punta elettrica dotata di piezocono, di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante (V=2 cm/s \pm 0.5 cm/s). La penetrazione avviene attraverso un dispositivo di spinta, che agisce su una batteria di aste (aste cave con il cavo di trasmissione dati all'interno), alla cui estremità inferiore è collegata la punta con piezocono.

Lo sforzo necessario per l'infissione viene determinato a mezzo di un opportuno sistema di misura estensimetrico collegato alla punta ed al manicotto dell'attrito laterale, e da un trasduttore di pressione per la misura della pressione interstiziale dei pori, cioè il carico idraulico istantaneo presente nell'intorno della punta, attraverso un setto poroso opportunamente saturato e disareato.

I dati delle resistenze alla punta, al manicotto laterale, della pressione dei pori e dell'inclinazione della punta vengono registrate su supporti magnetici e successivamente elaborati.

Le dimensioni della punta/manicotto sono standardizzate, e precisamente:

- diametro di base del cono $\phi = 35.7$ mm
- area della punta conica Ap = 10 cm²
- angolo apertura del cono B = 60°

Nei diagrammi e nelle tabelle riportati in All. 18 e All. 19 sono riportati i seguenti valori di resistenza (rilevati dalle letture di campagna, durante l'infissione dello strumento):

- qc (MPa) = resistenza alla punta (conica);
- fs (kPa) = resistenza laterale (manicotto);
- U (kPa) = pressione dei pori (setto poroso);

I parametri sopra descritti sono rilevati ad intervalli regolari di 2 cm.

Per quanto riguarda le indagini pregresse sono state acquisite n° 3 prove CPTU di cui una attrezzata con cono sismico, realizzate per lo studio di Risposta Sismica Locale della "Casa della Salute" di Busseto, eseguito dagli scriventi nel 2021.

Nelle seguenti immagini a titolo di esempio vengono riportati i grafici relativi ai parametri qc (cfr. Fig. 2) e fs (cfr. Fig. 3) delle prove SCPTU.

EN GEO S.r.I.	Elaborato	Data	Agg.	Pag.
DECEMBER OF OTOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	10 di 80

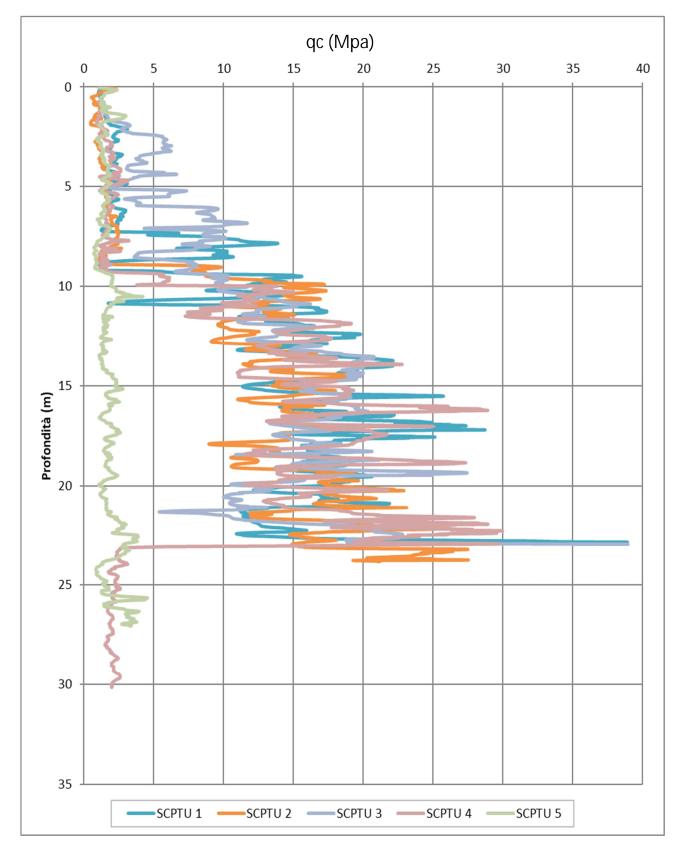


Fig. 2 - Andamento della resistenza qc in funzione della profondità per le 5 prove SCPTU

EN GEO S.c.l.	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	11 di 80

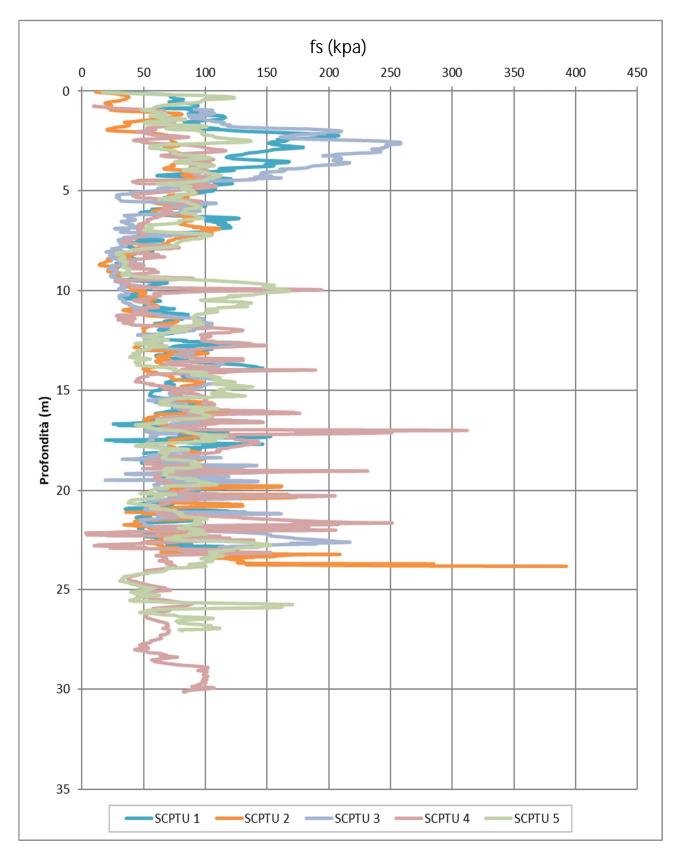


Fig. 3 - Andamento del parametro fs in funzione della profondità per le 5 prove SCPTU

THOSE OF THE PROPERTY OF THE P	Elaborato	Data	Agg.	Pag.
EN GEO S.d.	MS 3 - Relazione illustrativa	Luglio 2022	1	12 di 80

2.2 Indagine mediante sismocono

Per verificare le caratteristiche sismiche dei terreni sono state realizzate n° 5 prove mediante cono sismico eseguite durante la realizzazione delle prove penetrometriche (denominate SCPTU 1, SCPTU 2, SCPTU 3, SCPTU 4 e SCPTU 5), attrezzando lo strumento con una punta con piezocono e geofoni (cfr. All. 19).

Oltre ai normali parametri della prova CPTU registrati ogni 2 cm, nella prova con sismocono, ad ogni metro di profondità, viene sospesa l'infissione, e, a piano campagna, vengono generate delle onde di taglio (onde S) percuotendo orizzontalmente, con una mazza, una trave vincolata al terreno, per avere un sismogramma con una prevalente fase S.

Tramite sensori sismici, presenti all'interno della punta penetrometrica, e adeguato acquisitore dinamico, è possibile rilevare e registrare i segnali prodotti in superficie e, di conseguenza, determinare i tempi necessari alle onde S per percorrere il tratto da piano campagna fino alla profondità a cui si trova il geofono (cfr. Fig. 4).

Attraverso il rapporto distanza/tempo di percorrenza, è possibile determinare, direttamente e con buona precisione, le velocità delle onde S, caratterizzando i vari strati di terreno attraversati.

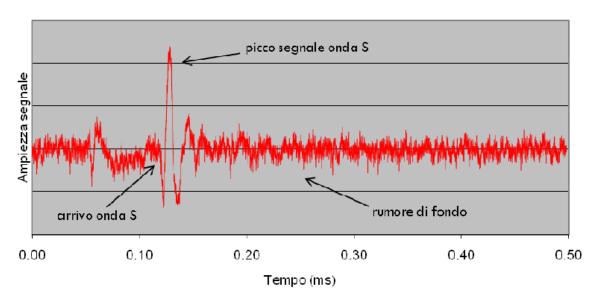


Fig. 4 - Esempio di sismogramma del segnale registrato a 10 m di profondità

In pratica, la prova con sismocono si può considerare come una prova *Down-Hole* a tutti gli effetti.

Nella seguente Fig. 5 viene riportato il grafico, in funzione della profondità, della velocità delle sole onde S, registrate nel corso delle 5 prove SCPTU effettuate per il presente studio.

FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	13 di 80

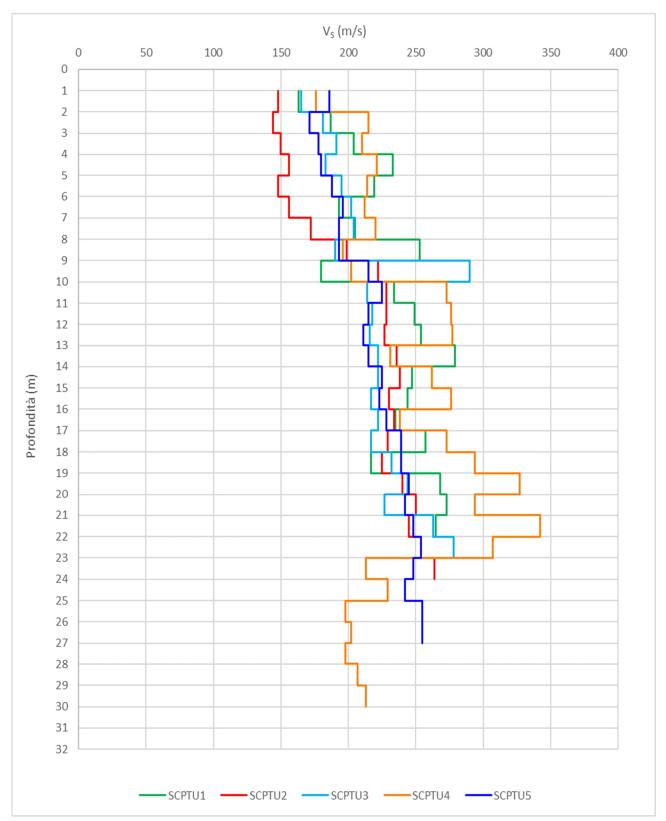


Fig. 5 - Valori di $V_{\rm S}$ in funzione della profondità misurati dalle prove SCPTU

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	14 di 80

2.3 Rilievo sismico HVSR mediante tromografo

Ai fini della determinazione della frequenza caratteristica dei suoli in corrispondenza dei punti delle indagini CPTU e SCPTU sono state eseguite n° 15 prove HVSR (*Horizzontal to Vertical Spectral Ratio*) tramite tromografo digitale.

Le prove sono state condotte utilizzando un sismometro a stazione singola (tromografo digitale con sensori da 2 Hz) in grado di registrare i microtremori lungo le due direzioni orizzontali (X, Y) e lungo quella verticale (Z), di un ampio intervallo di frequenze (0.1-100 Hz) e per una durata sufficientemente lunga (mediamente 20 minuti). Il moto indotto nel terreno è stato misurato dallo strumento in termini di velocità attraverso tre velocimetri, uno per ogni direzione di misura (X, Y e Z).

Le misure registrate sono state poi elaborate e restituite graficamente in forma di spettri H/V (cfr. Fig. 6).

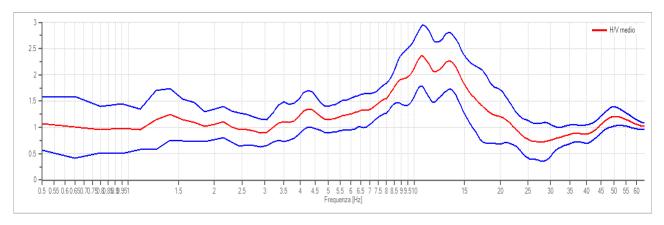


Fig. 6 - Grafico del rapporto H/V misurato dalla prova 034007P119HVSR119

I risultati dei rilievi sismici mediante tromografo sono riportati in All. 17; mentre, nella seguente Tab. 1, sono indicate le frequenze corrispondenti ai picchi d'amplificazione individuati.

Codice MS3 ³	Picco (Hz)
034007P110HVSR110	1.50±0.14
034007P111HVSR111	1.75±0.39
034007P112HVSR112	12.75±0.18
034007P113HVSR113	17.00±0.25
034007P114HVSR114	0.65±0.46
0034007P115HVSR115	1.05±0.47
034007P116HVSR116	16.45±0.21
034007P117HVSR117	1.25±0.30
034007P118HVSR118	7.10±0.20

³ Codice da normativa regionale

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	15 di 80

Codice MS3 ³	Picco (Hz)
034007P119HVSR119	10.70±0.25
034007P120HVSR120	10.55±0.27
034007P121HVSR121	16.85±0.31
034007P122HVSR122	14.30±0.24
034007P123HVSR123	0.65±0.38
034007P124HVSR124	18.35±0.37

Tab. 1 - Riepilogo dei picchi d'amplificazione misurati con le nuove prove HVSR

FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	16 di 80

3. Analisi di risposta sismica locale

Di seguito vengono fornite alcune informazioni di carattere generale sulle procedure di valutazione di risposta sismica locale, valide per tutti i siti indagati. Nei successivi paragrafi, saranno quindi illustrati i risultati della RSL per ciascun sito. Nel complesso sono state eseguite analisi di risposta sismica locale su n° 6 verticali, la cui ubicazione è riportata nella seguente Fig. 7.

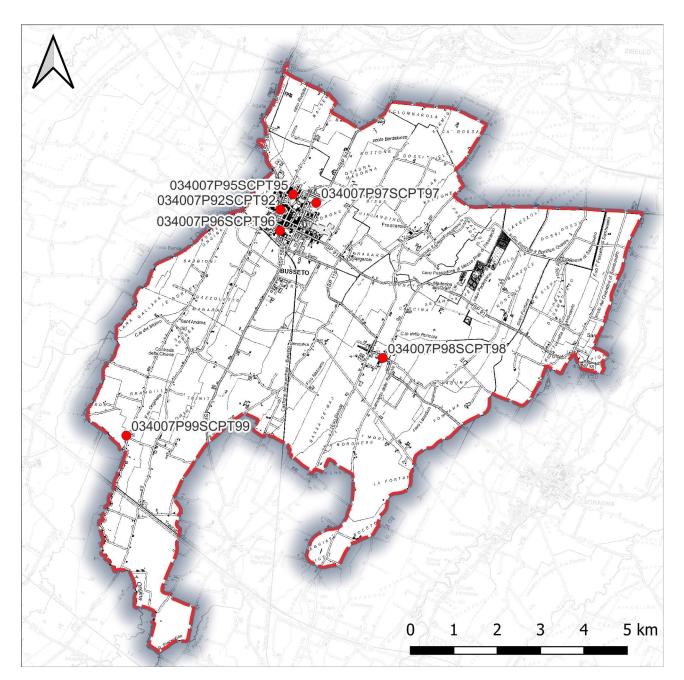


Fig. 7 - Ubicazione delle verticali utilizzate per l'analisi di risposta sismica locale

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	17 di 80

In corrispondenza di tutte le verticali di analisi è stata eseguita una misura diretta della velocità delle onde S in funzione della profondità, tramite prova penetrometrica statica con punta elettrica, piezocono e cono sismico (SCPTU). Inoltre è stata eseguita una indagine HVSR.

Nella seguente tabella si riporta un elenco dettagliato delle verticali di indagine:

Codice MS3 ⁴	Nome
034007P95SCPT95	Scuole medie
034007P96SCPT96	Istituto comprensivo
034007P97SCPT97	Conad
034007P98SCPT98	Roncole Verdi
034007P99SCPT99	San Rocco
034007P92SCPT92	Casa della Salute

Tab. 2 - Elenco delle verticali su cui è stata effettuata la risposta sismica locale

3.1 Pericolosità sismica di base

Nell'ambito della microzonazione sismica i parametri di riferimento (PGA su suolo di categoria A, spettri di risposta rappresentativi e segnali di riferimento) sono definiti dall'Allegato A4 della DGR 2193/2015 della Regione Emilia-Romagna.

In particolare, l'Allegato A4 contiene:

- la forma dello spettro di risposta normalizzato rappresentativo del moto sismico atteso per un periodo di ritorno di 475 anni (con smorzamento pari al 5%) in Emilia-Romagna;
- le indicazioni per il reperimento e l'utilizzo dei segnali di riferimento selezionati.
- Le indicazioni per il calcolo dei valori di a_{ref,g} (10% di probabilità di superamento in 50 anni) di ogni sito indagato;

Per i punti di indagine il parametro a_{refg}, che varia in funzione del sito indagato, risulta compreso nel seguente intervallo (Tab. 3):

a _{ref,g} (a _g /g)	
0.100 < a _{ref,g} < 0.150	

Tab. 3 - Valori di a_{refg} (10% di probabilità di superamento in 50 anni)

⁴ Codice da normativa regionale

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	18 di 80

3.2 Segnali in input

Quali segnali di input sismico sono stati utilizzati quelli forniti dalla piattaforma WebGIS sviluppata da EUCENTRE per la Regione Emilia-Romagna nell'ambito dell'accordo "Acquisizione del servizio di rilevamento a scala regionale del rischio sismico degli edifici residenziali ordinari e aggiornamento dei segnali di riferimento per la stima della risposta sismica locale negli studi di microzonazione sismica di terzo livello di approfondimento"⁵.

I segnali sismici sono rappresentativi dello scuotimento atteso, per un periodo di ritorno di 475 anni (10% di probabilità di superamento in 50 anni), sul suolo di riferimento relativo alla categoria di sottosuolo A definita nella tabella 3.2.2 delle Norme Tecniche per le Costruzioni del 2018, ovvero con Vs30 superiore a 800 m/s.

Tutti i segnali sono stati selezionati attraverso una procedura che valuta la similarità tra le forme spettrali di riferimento e la forma degli spettri di risposta dei segnali contenuti nelle banche dati. Il confronto viene effettuato con lo spettro di risposta indicato dalla NTC 2018, con il 10% di probabilità di eccedenza in 50 anni.

Il servizio fornisce 7 accelerogrammi per ciascun nodo del reticolo di riferimento della pericolosità sismica locale dell'Allegato A delle NTC 2018. Per le n° 4 verticali che ricadono nel Capoluogo (SCPTU 1 – Scuole medie, SCPTU 2 – Istituto comprensivo, SCPTU 3 – Conad e SCPTU 111 – Casa della Salute) sono stati utilizzati i sismi riferiti al nodo 14492 (cfr. Tab. 4, mentre per le verticali SCPTU 4 – Roncole Verdi e SCPTU 5 – San Rocco, sono stati utilizzati quelli riferiti al nodo 14715 (cfr. Tab. 5).

Gli accelerogrammi sono stati estratti per tempi di ritorno di 475 anni e sono stati scalati in accelerazione per ottenere un valore massimo di input compatibile con quello previsto dalle NTC per ogni verticale di indagine.

Mw	Distanza epicentrale	Fattore di scala	File
6.20	29.90	1.50 %	ESM EU.HRZHNE.D.19790524.172317.C.ACC.ASC
6.93	94.31	1.46 %	NGA RSN797_LOMAP_RIN000.AT2
5.60	18.00	0.72 %	ESM IT.LRSHNE.D.19980909.112800.C.ACC.ASC
6.60	31.00	0.46 %	KiKnet SMNH100010061330.EW2
6.50	57.74	2.48 %	NGA RSN8167_SANSIMEO_DCPP247.AT2
6.60	90.00	1.49 %	KiKnet FKOH060503201053.NS2
5.40	26.40	2.13 %	ESM 4A.MI05HNE.D.20090409.005259.C.ACC.ASC

Tab. 4 - Sismi estratti riferiti al nodo 14492

⁵ R.E.R. (eucentre.it)

EN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	19 di 80

Mw	Distanza epicentrale	Fattore di scala	File
6.20	29.90	1.69 %	ESM EU.HRZHNE.D.19790524.172317.C.ACC.ASC
5.74	12.57	1.11 %	NGA RSN146_COYOTELK_G01320.AT2
6.69	38.07	0.86 %	NGA RSN1091_NORTHR_VAS000.AT2
5.60	18.00	0.82 %	ESM IT.LRSHNE.D.19980909.112800.C.ACC.ASC
6.20	78.79	2.27 %	NGA RSN2989_CHICHI.05_CHY102N.AT2
6.60	31.00	0.53 %	KiKnet SMNH100010061330.EW2
6.50	57.74	2.79 %	NGA RSN8167_SANSIMEO_DCPP247.AT2

Tab. 5 - Sismi estratti riferiti al nodo 14715

3.3 Modello geofisico del sottosuolo

La valutazione della risposta sismica locale richiede un'accurata modellazione delle caratteristiche geofisiche del sottosuolo, principalmente basata sui seguenti parametri:

- litologia;
- velocità delle onde sismiche di taglio (V_s);
- curve di variazione dello smorzamento (D) e della rigidezza (G/G₀) in funzione della deformazione e densità in situ,

Tale modellazione va spinta in profondità fino a raggiungere il *bedrock* sismico, che teoricamente dovrebbe essere uno strato con velocità Vs>800 m/s.

A proposito della definizione del *bedrock* sismico, si rimanda al par. 4 - Criticità del metodo, in cui la questione viene discussa approfonditamente.

3.3.1 Litologia

Per la determinazione delle caratteristiche litologiche sono stati utilizzati i dati delle stratigrafie delle prove SCPTU e CPTU (cfr. par. 2.1) eseguite nei diversi siti; laddove necessario le informazioni sono state integrate con la stratigrafia di pozzi limitrofi l'area oggetto di studio forniti dal database geologico della Regione Emilia-Romagna.

3.3.2 Determinazione della V_S e del bedrock sismico

Per quanto riguarda la velocità delle onde S in funzione della profondità si è fatto riferimento alle misure delle prove con cono sismico (n° 6 SCPTU) fino alla massima profondità indagata e per i livelli inferiori, utili per la definizione del *bedrock* sismico, si è integrato con i dati delle prove HVSR, ReMi e MASW.

A FUOSO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	20 di 80

Indagine	Tipo indagine	Vs30
034007L1	MASW	258
034007L2	MASW	323
034007L3	MASW	243
034007L4	MASW	247
034007L5	REMI	441
034007L6	REMI	221
034007L7	REMI	225
034007L8	REMI	224
034007L9	REMI	232
034007L10	REMI	251
034007L11	REMI	301
034007L12	REMI	248

Indagine	Tipo indagine	Vs30
034007L13	REMI	238
034007L14	REMI	239
034007L15	REMI	236
034007L16	REMI	245
034007L17	REMI	295
034007L18	REMI	256
034007P1	HVSR	216
034007P3	HVSR	247
034007P4	HVSR	251
034007P5	HVSR	283
034007P6	HVSR	251
034007P7	HVSR	386

Indagine	Tipo indagine	Vs30
034007P8	HVSR	347
034007P9	HVSR	353
034007P98	SCPTU	235
034007P110	HVSR	211
034007P111	HVSR	223
034007P112	HVSR	218
034007P113	HVSR	281
034007P114	HVSR	263
034007P115	HVSR	206
034007P116	HVSR	213

Tab. 6 - Vs₃₀ ricavata dalle diverse indagini

La V_s è stata discretizzata per strati omogenei, in funzione principalmente della litologia, per consentire la realizzazione di un modello non troppo complesso.

Si è constatato, infatti, che l'introduzione di un eccessivo numero di strati nel software di calcolo, che sarebbero stati opportuni per seguire più fedelmente l'andamento della $V_{\rm S}$ con la profondità, introduce una complessità che non migliora i risultati.

Mediante il processo sopra descritto si giunge ad una prima discretizzazione della V_{S} in funzione della profondità. Ovviamente per i primi 25-30 m sono stati ritenuti più significativi i risultati delle prove SCPTU mentre per le profondità maggiori si è fatto riferimento principalmente alle prove HVSR.

A tale proposito, l'interpretazione delle prove HVSR ha tenuto conto anche dell'interpretazione geologica del sito, soprattutto in relazione alla definizione del bedrock.

Nella gran parte delle prove effettuate infatti è stato individuato un picco (cfr. Fig. 8) interpretabile come un contrasto di impedenza con profondità di circa 60 m da p.c.

Tale profondità corrisponde al limite tra il Subsintema di Agazzano e il Subsintema di Villa Verucchio, individuato sia negli studi regionali (Fig. 9) negli con gli studi di microzonazione di secondo livello redatti da Ambiter (cfr. Fig. 10).

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	21 di 80

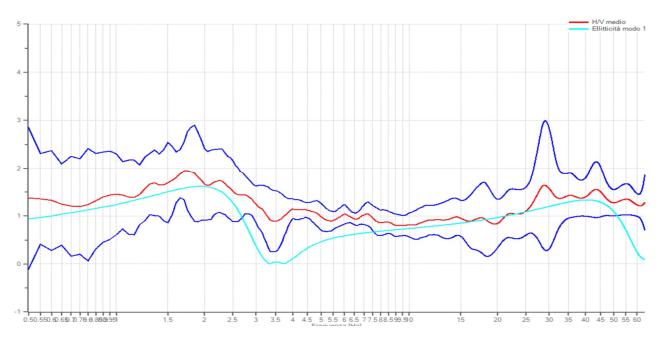


Fig. 8 - Esempio di prova HVSR con picco a 1.75 Hz

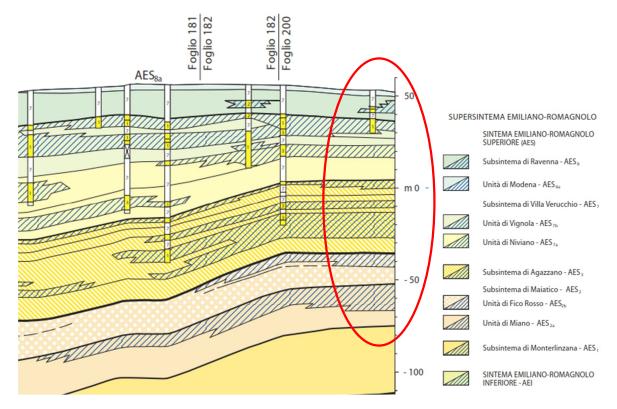


Fig. 9 - Stralcio della Sez. 39 RER

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	22 di 80

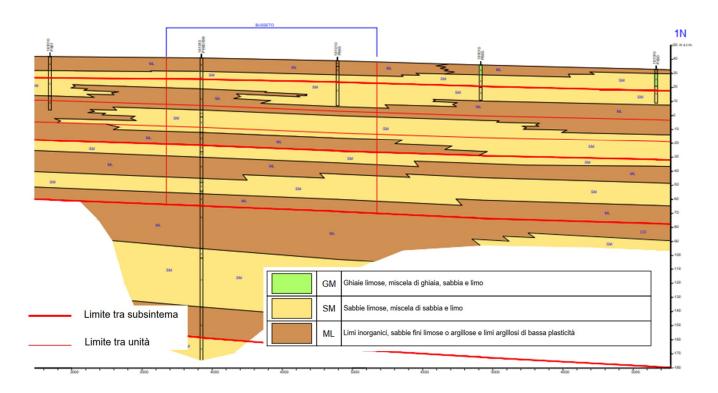


Fig. 10 - Stralcio della sezione della MS2

Il bedrock sismico, pertanto, è stato individuato a una profondità di circa -60 m da p.c. con una velocità V_s compresa tra 520 e 550 m/s, per le verticali che ricadono nelle MOPS della Zona 1 e della Zona 3 in cui il forte contrasto d'impedenza corrisponde al limite tra il Subsintema di Agazzano e il Subsintema di Villa Verucchio.

In Fig. 11 è riportato un esempio di discretizzazione della V_{S} per la definizione del modello sismostratigrafico per tutto il settore nord-occidentale.

A FUOSO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	23 di 80

Fig. 11 - Esempio di discretizzazione della V_S per la definizione del modello sismostratigrafico

Il contrato di impedenza a 60 m non è stato individuato per la zona della verticale 034007P99SCPT99 "San Rocco", nel settore meridionale del territorio comunale, che ricade nella MOPS 2002.

Come risulta evidente dalla Fig. 12, in questa zona il picco presenta una frequenza inferiore ad 1 Hz, per tanto il *bedrock* è stato individuato a una profondità di -110 m da p.c. con una velocità V_S di 750 m/s, che pare corrispondere a un contatto stratigrafico all'interno del sintema di Maiatico (AES2) (Fig. 9).

A FNOSO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	24 di 80

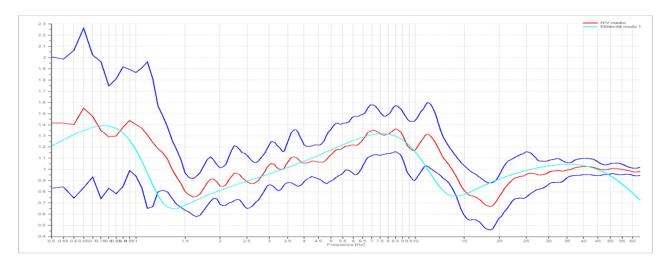


Fig. 12 - Esempio di prova HVSR con picco inferiore a 1 Hz

3.3.3 Curve di variazione dello smorzamento (D) e della rigidezza (G/G_0) in funzione della deformazione

Per la valutazione delle curve di variazione del rapporto di smorzamento (D) e del decadimento del modulo di taglio normalizzato (rigidezza, G/G_0) in funzione della deformazione di taglio γ , sono state utilizzate curve presenti in letteratura, scelte in funzione della descrizione litologica e, dove disponibili, dei parametri geotecnici.

In particolare, per i depositi argillosi e limosi sono state utilizzate le curve di Vucetic & Dobry, (1993),⁶ per i depositi sabbiosi Sand Seed & Idriss (1970)⁷ e per le ghiaie Rollins (1998)⁸, (cfr. Tab. 7).

Campione	Litologia	α	β	η	λ
Vucetic & Dobry PI=15	Argilla e limo	42.56	1.08	38.82	3.44
Vucetic & Dobry PI=30	Argilla e limo	18.74	0.98	11.52	1.58
Sand Seed & Idriss	Sabbia	13.05	0.93	22.28	2.3
Rollins	Ghiaia	39.01	1.11	22.38	2.61

Tab. 7 - Riepilogo dei parametri caratteristici delle curve da letteratura

Nelle seguenti figure sono riportate le curve di interpolazione per i parametri G/G_0 (Fig. 13) e D (Fig. 14) provenienti da letteratura.

 $^{8 \;} Rollins \; K.M., \; Evans \; M., \; Diehl \; N. \; and \; Daily \; W. \; -1998 \; - \; Shear \; modulus \; and \; damping \; relationships \; for \; gravels. \; J. \; of \; Geotechnical \; and \; Geoevironmental \; Engrg., \; 124 \; (5), \; 396-405.$

SHOPO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	25 di 80

⁶ M. Vucetic; R. Dobry - 1991 - Effect of Soil Plasticity on Cyclic Response - Journal of Geotechnical Engineering, Vol. 117, Issue 1.

⁷ H. B. Seed; I. M. Idriss – 1970 – Soil moduli and damping factors for dynamic response analyses – University of California Berkeley Structural Engineers and Mechanics.

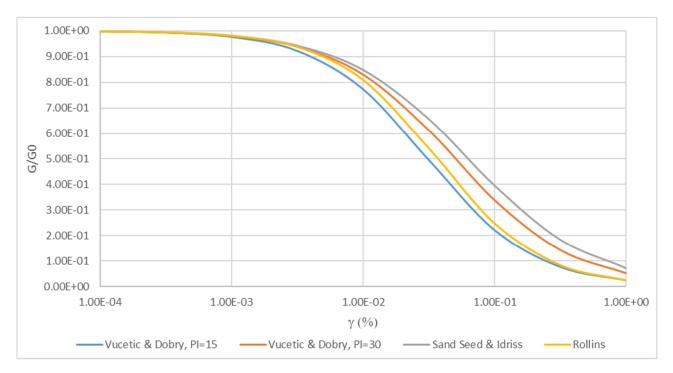


Fig. 13 - Grafico delle curve di interpolazione $G/G_{\scriptsize 0}$ in funzione della deformazione

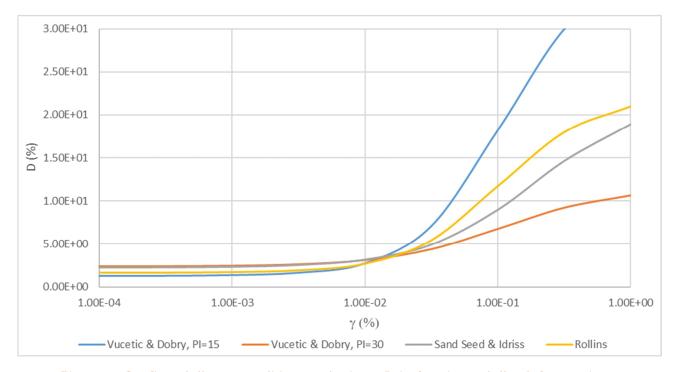


Fig. 14 - Grafico delle curve di interpolazione D in funzione della deformazione

FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	26 di 80

3.1 Procedura di analisi RSL

Per la valutazione della risposta sismica locale è stato utilizzato il codice di calcolo LSR 2D (Local Sismic Response 2D) Ver. 5.0 di STACEC.

Il codice di calcolo LSR2D consente di effettuare una modellazione bidimensionale del problema mediante il metodo degli elementi finiti, nel dominio del tempo, in tensioni totali, utilizzando il metodo lineare equivalente e tenendo conto della deformabilità del substrato.

Qualora la stratigrafia in esame non presenti problematiche di carattere bidimensionale, come nel caso in esame, è comunque possibile studiare il problema monodimensionale grazie ad una discretizzazione di una striscia unitaria di terreno e all'applicazione di un sistema di vincoli sul modello FEM tale da consentire solo deformazioni di taglio.

3.1.1 Metodo lineare equivalente

Il comportamento meccanico dei terreni sotto l'effetto di carichi ciclici ad elevata frequenza è alquanto complesso e caratterizzato da marcata non linearità, accumulo di deformazioni permanenti, dissipazione di energia e degradazione progressiva delle caratteristiche meccaniche per effetto del numero di cicli di carico applicati. In presenza di fluido interstiziale, alle suddette problematiche si aggiunge l'accumulo di sovrappressioni interstiziali in condizioni di drenaggio impedito o parziale, che sono comunque le più frequenti, in considerazione della velocità di applicazione del carico.

La modellazione di tali fenomeni richiede l'utilizzo di legami costitutivi complessi, che oltretutto difficilmente riescono a riprodurre simultaneamente tutte le specificità del comportamento dei terreni. Per tale ragione spesso si preferisce fare riferimento a modelli costitutivi semplificati che, pur non essendo rigorosi, riescono a riprodurre il comportamento in modo adeguato in riferimento alla specifica applicazione.

In particolare, per quanto riguarda la risposta sismica dei depositi, l'approccio viscoelastico lineare equivalente rappresenta un valido compromesso tra semplificazione delle analisi ed accuratezza dei risultati. La strategia consiste sostanzialmente nel fare riferimento alle soluzioni visco-elastiche lineari per la propagazione delle onde sismiche adeguando in modo iterativo i parametri costitutivi in funzione del livello deformativo indotto dal moto sismico nel terreno.

Tale modello lineare equivalente, studia il comportamento tra tensione e deformazione del terreno basandosi sul modello di Kelvin-Voigt, illustrato in Fig. 15. La tensione τ dipende dalla deformazione γ e dalla sua derivata γ' , secondo la relazione:

$$\tau = G\gamma + \eta \dot{\gamma}$$

dove:

- G = Modulo di taglio;
- η = viscosità del mezzo;

FNOFO	Elaborato	Data	Agg.	Pag.
ENGEO S.cl.	MS 3 - Relazione illustrativa	Luglio 2022	1	27 di 80

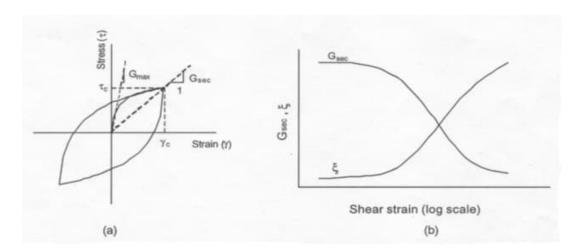


Fig. 15 - Modello lineare equivalente: (a) curve tensioni - deformazioni; (b) variazione del modulo.

Il comportamento non lineare del terreno, durante un ciclo di carico, viene approssimato per come mostrato in Fig. 15. Il modulo di taglio equivalente, G, è preso considerando il modulo di taglio secante Gs.

È possibile notare come alla fine di un ciclo controllato e simmetrico di tensioni si ha:

$$Gs = \frac{\tau_c}{\gamma_c}$$

La curva Gs – γ non può avere una forma arbitraria ma deriva dalla curva τ – γ e sussiste la seguente relazione:

$$\frac{dt}{d\gamma} = G_s(\gamma) + \frac{dG_s}{d\gamma} \gamma \ge 0$$

La descrizione del comportamento meccanico dei terreni nei confronti dei carichi ciclici non può peraltro prescindere dalla dissipazione intrinseca di energia che si verifica durante i cicli di carico-scarico. Il parametro di riferimento a tal riguardo è costituito dal coefficiente di smorzamento D, definito come:

$$D = \frac{1}{4\pi} \frac{\Delta W^{dissp}}{W^{max}}$$

dove:

- ΔW^{dissp} = quantità di energia dissipata, per unità di volume, dal terreno durante un ciclo di carico armonico;
- W^{max} = massima energia di deformazione, per unità di volume, immagazzinata dal terreno durante lo stesso ciclo di carico armonico;

In definitiva la risposta non lineare del terreno tramite il modello viscoelastico lineare equivalente viene riassunta mediante delle curve di riduzione del modulo di taglio e di incremento del rapporto di smorzamento (Fig. 15b).

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	28 di 80

3.1.2 Soluzione alla singola iterazione mediante FEM

L'approccio utilizzato per la soluzione visco-elastica lineare all'interno dell'i-esimo ciclo iterativo utilizza il metodo degli elementi finiti. In particolare, il deposito di terreno viene discretizzato mediante una "mesh" di elementi finiti piani che possono avere forma quadrangolare o rettangolare a seconda dei casi (Fig. 16) e caricato mediante un'accelerazione alla base dello stesso (bedrock), la soluzione dell'equazione del moto viene poi ottenuta nel dominio del tempo utilizzando il metodo di integrazione di Newmark.

$$M\ddot{u} + C\dot{u} + Ku = -Ma_a$$

dove:

M = matrice di massa del sistema;

C = matrice di smorzamento del sistema;

K = matrice di rigidezza del sistema;

 $\ddot{u}_i \dot{u}_i u$ = rispettivamente vettori di accelerazione, velocità e spostamento del sistema;

 a_q = vettore di accelerazione alla base;

Tale equazione vale per ogni istante di tempo tn e descrive l'equilibrio dinamico del sistema. La soluzione in termini di spostamento velocità ed accelerazione per ogni tn viene ottenuta a partire dalle seguenti relazioni:

$$\dot{u}_{n} = \dot{u}_{n-1} + \Delta t \left[(1 - \gamma) \ddot{u}_{n-1} + \gamma \ddot{u}_{n} \right]$$

$$u_{n} = u_{n-1} + \Delta t \dot{u}_{n-1} + \frac{\Delta t^{2}}{2} \left[(1 - \beta) \ddot{u}_{n-1} + 2\beta \ddot{u}_{n} \right]$$

dove:

 Δt = incremento temporale tra l'istante di tempo tn e tn – 1

 β = parametro del metodo di integrazione posto pari a 0.25

 γ = parametro del metodo di integrazione posto pari a 0.50

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	29 di 80

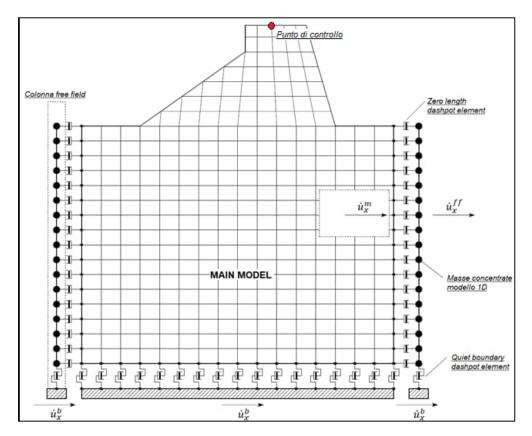


Fig. 16 - Discretizzazione FEM del terreno

3.1.3 Smorzamento

La matrice di smorzamento del sistema viene ottenuta mediante l'assemblaggio delle matrici di smorzamento dei singoli elementi, queste ultime ottenute a loro volta come:

$$C_q = \alpha_q M_q + \beta_q K_q$$

dove:

 $\alpha_q \in \beta_q = \text{coefficienti di smorzamento alla Reyleigh};$

Tali coefficienti vengono ottenuti a partire dal rapporto di smorzamento viscoso del singolo elemento e dalla relazione seguente:

$$\dot{u}_n = \dot{u}_{n-1} + \Delta t \left[(1 - \gamma) \ddot{u}_{n-1} + \gamma \ddot{u}_n \right]$$

$$u_n = u_{n-1} + \Delta t \dot{u}_{n-1} + \frac{\Delta t^2}{2} \left[(1 - \beta) \ddot{u}_{n-1} + 2\beta \ddot{u}_n \right]$$

da cui si ottiene (Hudson, 1994):

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	30 di 80

$$D_q = \frac{1}{2} \left(\frac{\alpha_q}{\omega} + \beta_q \omega \right)$$

dove:

- $\omega 1$ = frequenza naturale del primo modo del deposito;
- ω2 = n * ω1 con n = ωi/ω1 (approssimato all'intero pari più grande) e ωi frequenza di picco dello spettro ottenuto a partire dall'accelerazione di bedrock;

3.1.4 Procedimento iterativo

La procedura iterativa che consente di ottenere la risposta non lineare del sistema consiste nell'eseguire una sequenza di analisi lineari, con aggiornamento iterativo dei parametri di rigidezza e smorzamento, fino al raggiungimento di un prefissato criterio di convergenza. Lo schema della procedura iterativa su cui è basato il modello lineare equivalente, da applicare ad ogni strato in cui è stato discretizzato il profilo stratigrafico, è il sequente:

- 1. definizione di curve $G = G(\gamma)$ e $D = D(\gamma)$ per i diversi strati;
- 2. inizializzazione dei valori del modulo di taglio e del fattore di smorzamento ai livelli di piccole deformazioni (G0 e D0);
- calcolo della risposta dinamica del suolo e valutazione della deformazione massima a taglio in ogni strato (γ1);
- 4. aggiornamento dei valori $G1 = G(\gamma 1)$ e $D1 = D(\gamma 1)$;
- 5. iterazione dei passi 3 e 4 fino a convergenza ($\gamma i 1 \sim \gamma i$).

3.1.5 Interpretazione dei risultati

Il risultato della procedura iterativa sopradescritta non è altro che la storia temporale di accelerazione, velocità e spostamento di ogni grado di libertà del modello FEM.

Tuttavia, dal punto di vista ingegneristico è interessante monitorare la risposta in termini di accelerazione in superficie in corrispondenza di uno o più punti di controllo in modo da comprendere quelli che sono gli effetti indotti dal sito sull'amplificazione della sorgente sismica.

3.2 Analisi dei risultati

I risultati delle analisi condotte con il codice di calcolo LSR 2D (Local Sismic Response 2D) Ver. 5.0 di STACEC, elaborati nel dominio del tempo e delle frequenze, hanno consentito di definire per il sito in esame:

- La funzione di trasferimento del segnale sismico dal bedrock alla superficie;
- Lo spettro di risposta elastico in pseudoaccelerazione (PSA di cui in Fig. 17 si riporta un esempio) e lo spettro di risposta elastico in pseudovelocità (PSV di cui in Fig. 18 si riporta un esempio); gli spettri rappresentati sono ottenuti come mediana dei valori degli spettri di tutti i segnali sismici in output.

FN CFC	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	31 di 80

- La curva di variazione dell'accelerazione con la profondità (di cui in Fig. 19 si riporta un esempio);
- Il fattore di amplificazione in termini di picco di accelerazione (FA_{PGA}), definito come il rapporto tra l'accelerazione massima in superficie ed il valore di riferimento per il sito su suolo rigido;
- Il fattore di amplificazione di sito in termini di rapporto tra intensità dello spettro di risposta in pseudovelocità (FH_{IS}) calcolato in superficie e quello calcolato su suolo rigido. In sostanza viene calcolato il rapporto degli indici di Housner negli intervalli 0.1-0.5 s, 0.5-1.0 s e 0.5-1.5 s, per i due spettri indicati (superficie e suolo rigido). I rapporti risultano pertanto:

$$FH_{IS\ 0.1-0.5} = \frac{\int_{0.1}^{0.5} PSV_{superficie}(T)dt}{\int_{0.1}^{0.5} PSV_{suolo\ rigido}(T)dt}$$

$$FH_{IS\ 0.5-1.0} = \frac{\int_{0.5}^{1.0} PSV_{superficie}(T)dt}{\int_{0.5}^{1.0} PSV_{suolo\ rigido}(T)dt}$$

$$FH_{IS\ 0.5-1.5} = \frac{\int_{0.5}^{1.5} PSV_{suolo\ rigido}(T)dt}{\int_{0.5}^{1.5} PSV_{suolo\ rigido}(T)dt}$$

 Il fattore di amplificazione di sito in termini di rapporto tra intensità dello spettro di risposta in pseudoaccelerazione (FA_{SA}) calcolato in superficie e quello calcolato su suolo rigido in diversi intervalli. I rapporti risultano pertanto:

$$FA_{SA\ 0.1-0.5} = \frac{\int_{0.1}^{0.5} PSA_{superficie}(T)dt}{\int_{0.1}^{0.5} PSA_{suolo\ rigido}(T)dt}$$

$$FA_{SA\ 0.4-0.8} = \frac{\int_{0.4}^{0.8} PSA_{superficie}(T)dt}{\int_{0.4}^{0.8} PSA_{superficie}(T)dt}$$

$$FA_{SA\ 0.7-1.1} = \frac{\int_{0.7}^{1.1} PSA_{superficie}(T)dt}{\int_{0.7}^{1.1} PSA_{suolo\ rigido}(T)dt}$$

$$FA_{SA\ 0.5-1.5} = \frac{\int_{0.5}^{1.5} PSA_{superficie}(T)dt}{\int_{0.5}^{1.5} PSA_{suolo\ rigido}(T)dt}$$

A FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	32 di 8

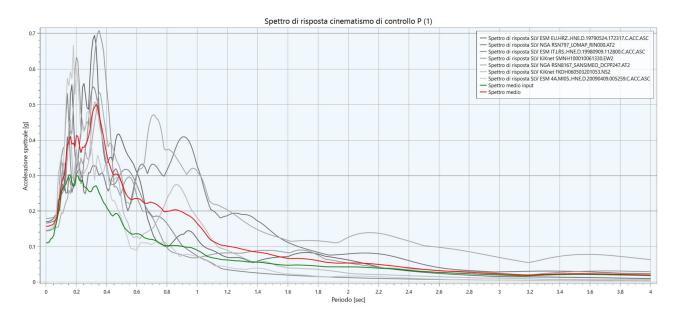


Fig. 17 - Esempio di spettro elastico in accelerazione (in grigio gli spettri dei singoli accelerogrammi, in verde lo spettro medio di input, in rosso lo spettro medio di output)

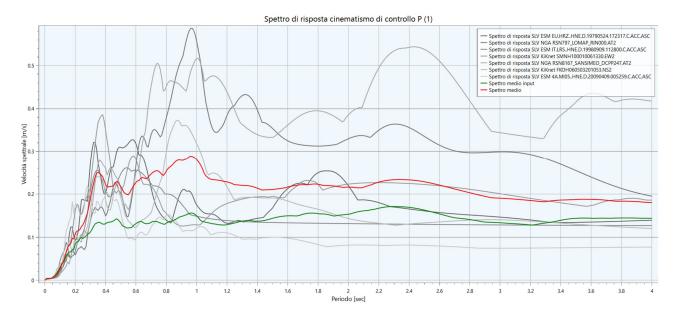


Fig. 18 - Spettro elastico in velocità (in grigio gli spettri dei singoli accelerogrammi, in verde lo spettro medio di input, in rosso lo spettro medio di output)

SU OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	33 di 80

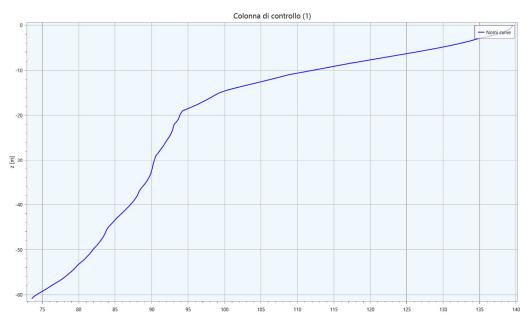


Fig. 19 - Variazione dell'accelerazione con la profondità

I fattori di amplificazione in accelerazione e velocità sono ottenuti direttamente dal programma di calcolo confrontando lo spettro medio degli accelerogrammi in input con quello ottenuto dagli accelerogrammi in output. In Fig. 20 è riportato il grafico relativo, generato da LSR2D.

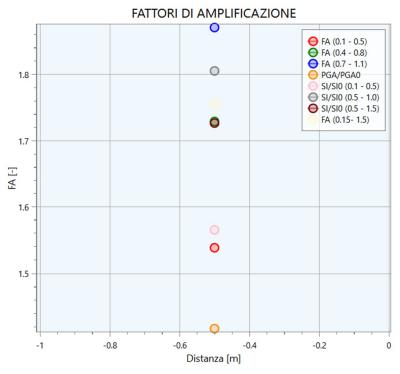


Fig. 20 - Grafico dei fattori di amplificazione

FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	34 di 80

3.2.1 Spettro di risposta elastico normalizzato

Le verifiche progettuali delle strutture richiedono anche i parametri espressi secondo i parametri di normativa (a_g , F_0 , T_B , T_C , T_C^* , T_D , C_C , S, η); per questo motivo è necessario dapprima normalizzare lo spettro elastico ricavato dalla risposta sismica locale. Considerato che la procedura di normalizzazione dello spettro non è prevista dalle NTC 2018 si sono seguite le indicazioni fornite dalle Ordinanze P.C.M N° 24 del 12/5/2017 e n° 55 del 24/4/2018, modificate per la sola determinazione di T_D^9 con il metodo di Newmak-Hall¹⁰.

La normalizzazione dello spettro è avvenuta attraverso la seguente metodologia:

- a) Dallo spettro in pseudoaccelerazione calcolato con la RSL (SA) si determina il periodo proprio (TA) per il quale è massimo il valore dello stesso;
- b) Si calcola il valore medio dello spettro (Sa_m) nell'intorno di TA tra 0.5 TA e 1.5 TA. Questo valore viene assunto come valore costante del tratto ad accelerazione costante dello spettro standard:

$$SA_m = \int_{0.5TA}^{1.5TA} SA(T)dT$$

c) Si determina lo spettro di pseudovelocità (SV) a partire da quello di accelerazione, moltiplicando le ordinate spettrali di quest'ultimo per l'inverso della corrispondente frequenza circolare $\omega=2\pi/T$:

$$SV(T) = SA(T) * \frac{T}{2\pi}$$

e quindi si individua il periodo (TV) per il quale è massimo il valore dello spettro di pseudovelocità;

d) Si calcola il valore medio dello spettro (SV_m) nell'intorno di TV tra 0.8 TV e 1.2 TV:

$$SV_m = \frac{1}{0.4 * TV} \int_{0.8TV}^{1.2TV} SV(T) dT$$

e) Si determina il periodo in corrispondenza del quale si incontrano i due rami dello spettro ad accelerazione costante e velocità costante:

$$T_C = 2\pi * \frac{SV_m}{SA_m}$$

- f) Si determina lo spettro di pseudospostamento (SV) a partire da quello di velocità e quindi si individua il periodo (TD) per il quale è massimo il valore dello spettro di pseudospostamento;
- g) Si calcola il valore medio dello spettro (SDm) nell'intorno di TD tra 0.8 TD e 1.2 TD:

$$SD_m = \frac{1}{0.4 * TD} \int_{0.8TD}^{1.2TD} SD(T) dT$$

¹⁰ Newmark NM, Hall WJ, Earthquake Spectra and Design, EERI Monograph Series, 1982.

EN GEO S.c.I.	Elaborato	Data	Agg.	Pag.
DECEMBER OF OTOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	35 di 80

 $^{^{9}}$ La modifica del valore di T_D si è resa necessaria poiché la formula indicata dalle ordinanze porta ad una evidente sovrastima dello spettro nel tratto tra T_C e T_D .

h) Si calcola il valore di T_D con la formula:

$$T_D = 2\pi * \frac{SD_m}{SV_m}$$

- i) Si determina T_B=1/3*T_C
- j) Si determina il valore di F_0 come rapporto SA_m/a_{max} , dove a_{max} è ricavato dalla seguente equazione:

$$a_{max} = \left(\frac{S_e(T = 0.01 s)}{SA_m} - \frac{0.01}{T_B}\right) * \left(\frac{SA_m}{1 - \frac{0.01}{T_B}}\right)$$

k) Si applicano le seguenti equazioni riportate in NTC 2018 (Cap. 3.2.3.2.1) per la determinazione dei tratti dello spettro tra $T_A=0$, T_B , T_C , T_D , fino a un T di interesse.

I)

$$- 0 \le T \le T_B \qquad S_e(T) = a_g * S * \eta * F_0 \left[\frac{T}{T_B} + \frac{1}{\eta * F_0} * \left(1 - \frac{T}{T_B} \right) \right]$$

-
$$T_B \le T \le T_C$$
 $S_e(T) = a_g * S * \eta * F_0$

-
$$T_C \le T \le T_D$$
 $S_e(T) = a_g * S * \eta * F_0\left(\frac{T_C}{T}\right)$

-
$$T_D \leq T$$
 $S_e(T) = a_g * S * \eta * F_0\left(\frac{T_C T_D}{T^2}\right)$

A FUOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	36 di 80

3.3 Risultati della modellazione numerica

Di seguito vengono presentati in dettaglio i risultati delle analisi effettuate sulle n° 6 verticali studiate.

3.3.1 RSL per il sito "Scuole medie" (034007P95SCPT95)

Litalagia	Profondità	(m da p.c.)	Spessore	(1.01/3)	Vs	Curus di decedire cute		
Litologia	da	а	· (m)	γ (kN/m ³) (m/s)		$\gamma (KIN/M^3)$ (m/s)		Curva di decadimento
Argilla	0.00	-3.00	3.00	18.00	175.00	Vucetic & Dobry, PI = 30		
Argilla limosa	-3.00	-11.00	8.00	18.50	220.00	Vucetic & Dobry, PI = 15		
Sabbia	-11.00	-22.00	11.00	19.00	250.00	Sand Seed & Idriss		
Ghiaia	-22.00	-60.90	38.90	20.00	350.00	Rollins		
Bedrock	-60.90	-	_	22.00	530.00	-		

Tab. 8 - Modello geofisico della verticale "Scuole medie"

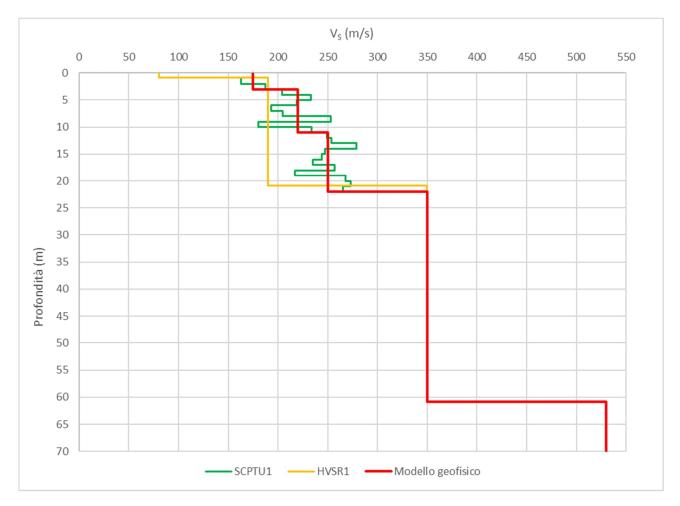


Fig. 21 - Discretizzazione della V_S lungo la verticale "Scuole medie"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.rl.	MS 3 - Relazione illustrativa	Luglio 2022	1	37 di 80

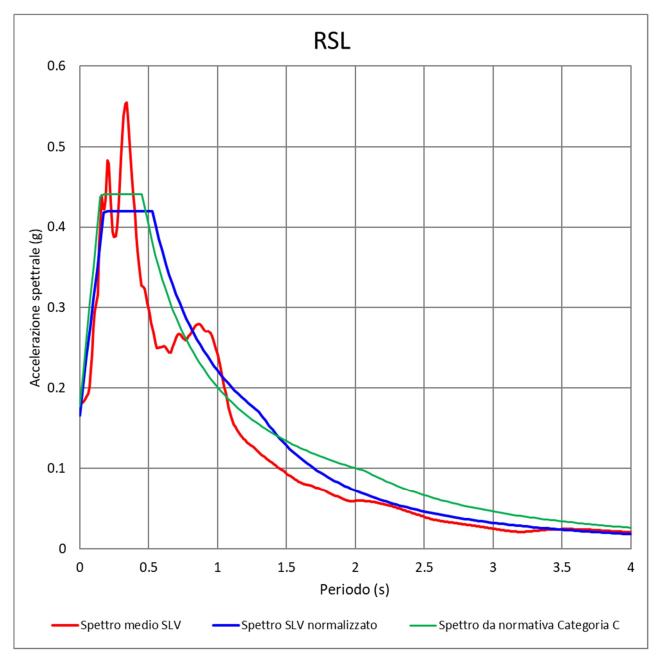


Fig. 22 - Spettro medio di risposta in accelerazione e spettro medio normalizzato per la verticale "Scuole medie", confrontati con lo spettro semplificato da normativa per la categoria di sottosuolo C

a _{max} (T=0)	Fo	Tc*	η	S	Tb	Tc	Td	Сс
0.166	2.529	0.372	1.000	1.000	0.176	0.528	1.307	1.420

Tab. 9 - Parametri normalizzati per la verticale "Scuole medie"

EN GEO S.d.	Elaborato	Data	Agg.	Pag.
ENGINELLING BEOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	38 di 80

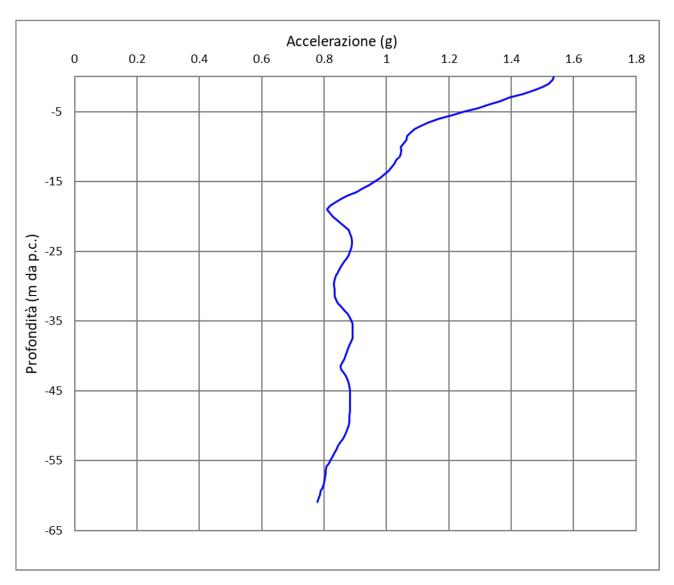


Fig. 23 - Accelerazione in output in funzione della profondità lungo la verticale "Scuole medie"

Fattore di amplificazione	Valore calcolato	Valore da abachi RER	Differenza
FA (0.1-0.5 s)	1.54	1.8	-14.52%
FA (0.4-0.8 s)	1.73	2.7	-35.94%
FA (0.5-1.5 s)	1.76	3.2	-45.15%
FA (0.7-1.1 s)	1.87	3.1	-39.65%
PGA/PGA ₀	1.42	1.7	-16.65%
SI/SI ₀ (0.1-0.5 s)	1.57	2.0	-21.72%
SI/SI ₀ (0.5-1.0 s)	1.81	3.0	-39.81%
SI/SI ₀ (0.5-1.5 s)	1.73	3.3	-47.66%

Tab. 10 - Fattori di amplificazione calcolati lungo la verticale "Scuole medie"

FN GEO Sel	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	39 di 80

3.3.2 RSL per il sito "Istituto comprensivo" (034007P96SCPT96)

Litalogia	Profondità	(m da p.c.)	Spessore	(1cN1/pp 3)	Vs	Curus di decedire cute
Litologia	da	а	· (m)	γ (kN/m ³)	(m/s)	Curva di decadimento
Argilla	0.00	-8.00	8.00	18.00	150.00	Vucetic & Dobry, PI = 30
Sabbia 1	-8.00	-19.00	11.00	19.00	230.00	Sand Seed & Idriss
Sabbia 2	-19.00	-24.00	5.00	19.00	250.00	Sand Seed & Idriss
Ghiaia	-24.00	-60.50	36.50	20.00	350.00	Rollins
Bedrock	-60.50	_	_	22.00	520.00	-

Tab. 11 - Modello geofisico della verticale "Istituto comprensivo"

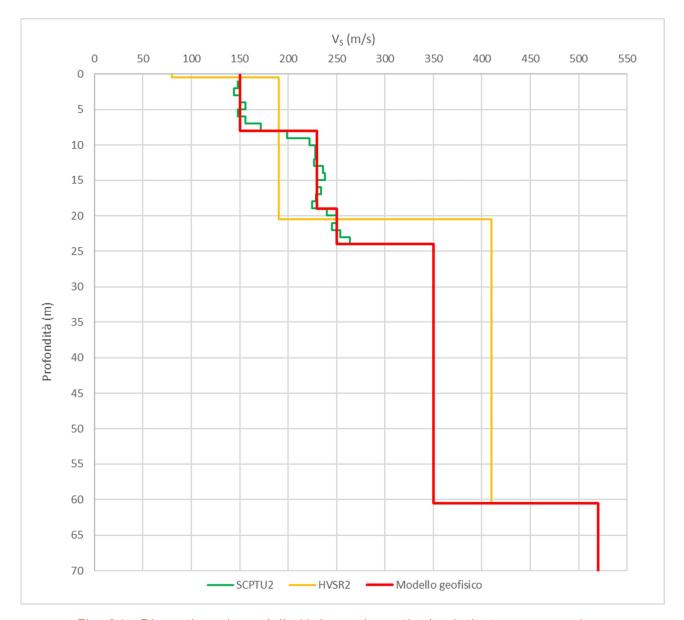


Fig. 24 - Discretizzazione della V_{S} lungo la verticale "Istituto comprensivo"

ENCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	40 di 80

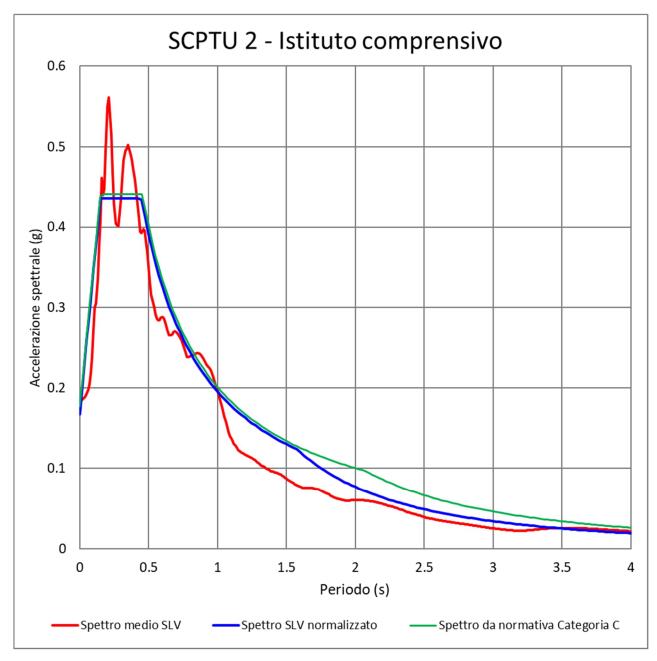


Fig. 25 - Spettro medio di risposta in accelerazione e spettro medio normalizzato per la verticale "Istituto comprensivo", confrontati con lo spettro semplificato da normativa per la categoria di sottosuolo C

a _{max} (T=0)	Fo	Tc*	η	S	Tb	Tc	Td	Сс
0.167	2.610	0.320	1.000	1.000	0.149	0.488	1.573	1.420

Tab. 12 - Parametri normalizzati per la verticale "Istituto comprensivo"

FN GEO Sel	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	41 di 80

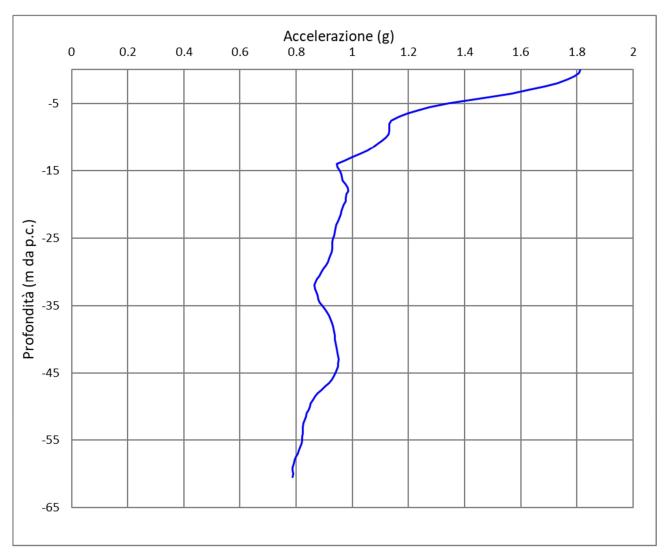


Fig. 26 - Accelerazione in output in funzione della profondità lungo la verticale "Istituto comprensivo"

Fattore di amplificazione	Valore calcolato	Valore RER	Differenza
FA (0.1-0.5 s)	1.84	1.8	2.11%
FA (0.4-0.8 s)	2.01	2.7	-25.67%
FA (0.5-1.5 s)	1.82	3.2	-43.17%
FA (0.7-1.1 s)	1.87	3.1	-39.56%
PGA/PGA ₀	1.68	1.7	-1.03%
SI/SI ₀ (0.1-0.5 s)	1.89	2.0	-5.58%
SI/SI ₀ (0.5-1.0 s)	2.00	3.0	-33.27%
SI/SI ₀ (0.5-1.5 s)	1.85	3.3	-44.06%

Tab. 13 - Fattori di amplificazione calcolati lungo la verticale "Istituto comprensivo"

FN GEO Sel	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	42 di 80

3.3.3 RSL per il sito "Conad" 034007P97SCPT97

1 :4 - 1 : -	Profondità	(m da p.c.)	Spessore	(1.01/3)	Vs	O
Litologia	da	а	· (m)	γ (kN/m ³)	(m/s)	Curva di decadimento
Limo	0.00	-5.00	5.00	18.50	175.00	Vucetic & Dobry, PI = 15
Sabbia 1	-5.00	-9.50	4.50	19.00	200.00	Sand Seed & Idriss
Sabbia 2	-9.50	-19.00	9.50	19.00	220.00	Sand Seed & Idriss
Sabbia 3	-19.00	-23.00	4.00	19.00	250.00	Sand Seed & Idriss
Ghiaia	-23.00	-60.00	37.0	20.00	350.00	Rollins
Bedrock	-60.00	-	_	22.00	520.00	_

Tab. 14 - Modello geofisico della verticale "Conad"

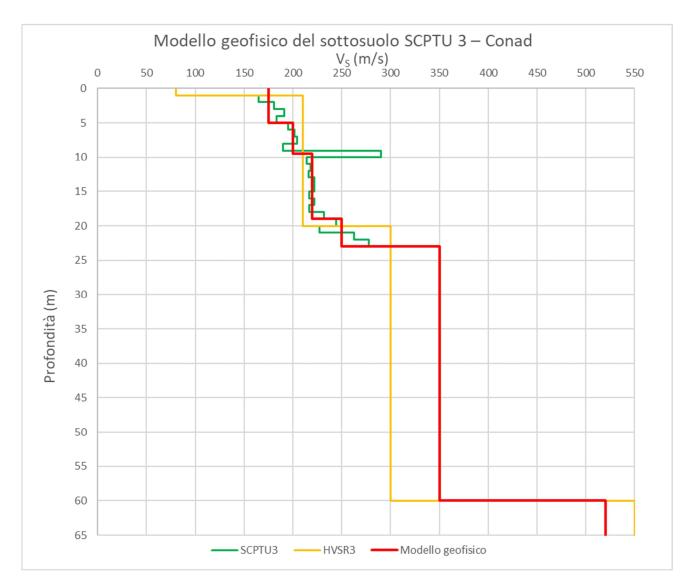


Fig. 27 - Discretizzazione della V_S lungo la verticale "Conad"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.rl.	MS 3 - Relazione illustrativa	Luglio 2022	1	43 di 80

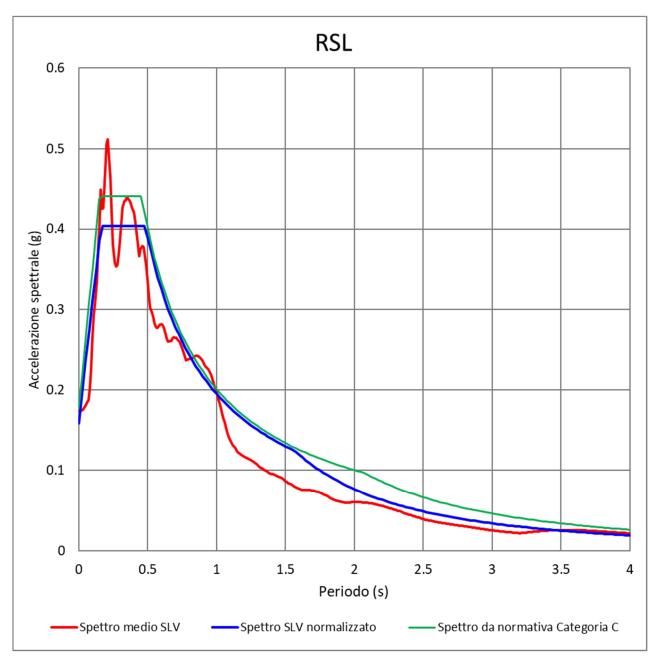


Fig. 28 - Spettro medio di risposta in accelerazione e spettro medio normalizzato per la verticale "Conad", confrontati con lo spettro semplificato da normativa per la categoria di sottosuolo C

a _{max} (T=0)	Fo	Tc*	h	S	Tb	Tc	Td	Сс
0.158	2.550	0.341	1.000	1.000	0.161	0.484	1.570	1.420

Tab. 15 - Parametri normalizzati per la verticale "Conad"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	44 di 80

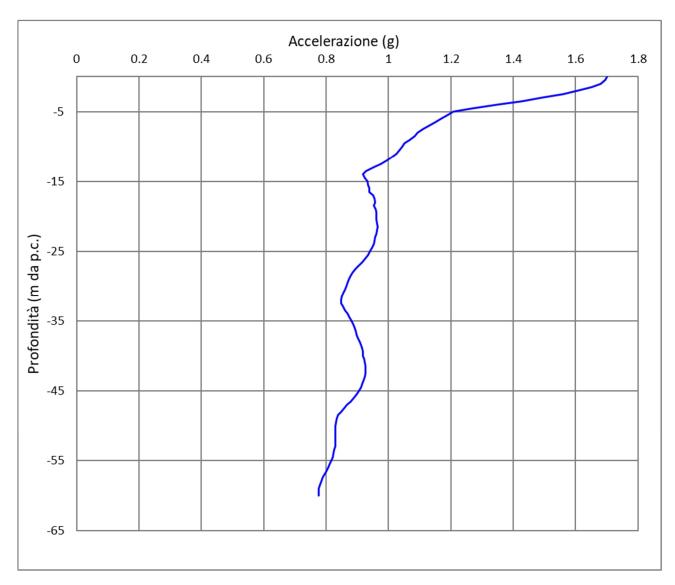


Fig. 29 - Accelerazione in output in funzione della profondità lungo la verticale "Conad"

Fattore di amplificazione	Valore calcolato	Valore RER	Differenza
FA (0.1-0.5 s)	1.50	1.8	-16.78%
FA (0.4-0.8 s)	1.92	2.7	-28.71%
FA (0.5-1.5 s)	1.92	3.2	-39.91%
FA (0.7-1.1 s)	2.07	3.1	-33.12%
PGA/PGA ₀	1.45	1.7	-14.98%
SI/SI ₀ (0.1-0.5 s)	1.51	2.0	-24.61%
SI/SI ₀ (0.5-1.0 s)	1.96	3.0	-34.56%
SI/SI ₀ (0.5-1.5 s)	1.87	3.3	-43.38%

Tab. 16 - Fattori di amplificazione calcolati lungo la verticale "Conad"

FN GEO Set	Elaborato	Data	Agg.	Pag.
DECEMBER OF STORES	MS 3 - Relazione illustrativa	Luglio 2022	1	45 di 80

3.3.4 RSL per il sito "Roncole Verdi" (034007P98SCPT98)

Litalogia	Profondità	(m da p.c.)	Spessore	(IcNI/pp 3)	Vs	Curva di decadimento
Litologia	da	а	(m)	γ (kN/m ³)	(m/s)	Curva di decadimento
Argilla limosa	0.00	-10.00	10.00	18.50	210.00	Vucetic & Dobry, PI = 30
Sabbia 1	-10.00	-17.00	7.00	19.00	260.00	Sand Seed & Idriss
Sabbia 2	-17.00	-23.00	6.00	19.00	310.00	Sand Seed & Idriss
Argilla	-23.00	-40.00	17.00	18.50	215.00	Vucetic & Dobry, PI = 15
Ghiaia	-40.00	-60.00	20.00	20.00	350.00	Rollins
Bedrock	-60.00	-	-	22.00	550.00	-

Tab. 17 - Modello geofisico della verticale "Roncole Verdi"

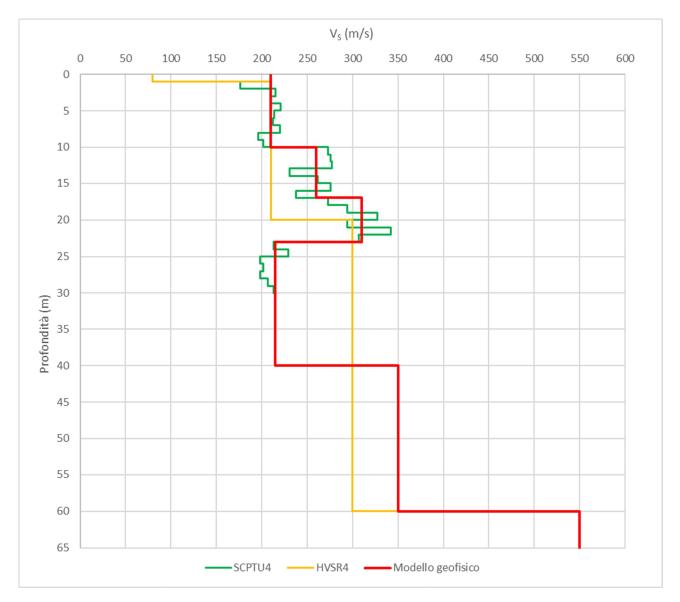


Fig. 30 - Discretizzazione della $V_{\rm S}$ lungo la verticale "Roncole Verdi"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.rl.	MS 3 - Relazione illustrativa	Luglio 2022	1	46 di 80

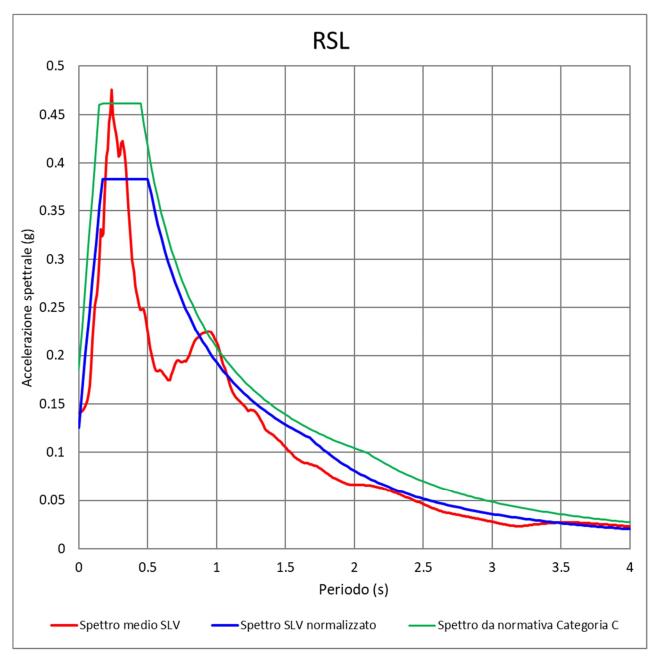


Fig. 31 - Spettro medio di risposta in accelerazione e spettro medio normalizzato per la verticale "Roncole Verdi", confrontati con lo spettro semplificato da normativa per la categoria di sottosuolo C

a _{max} (T=0)	Fo	Tc*	h	S	Tb	Tc	Td	Сс
0.126	3.048	0.355	1.000	1.000	0.168	0.504	1.679	1.420

Tab. 18 - Parametri normalizzati per la verticale "Roncole Verdi"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	47 di 80

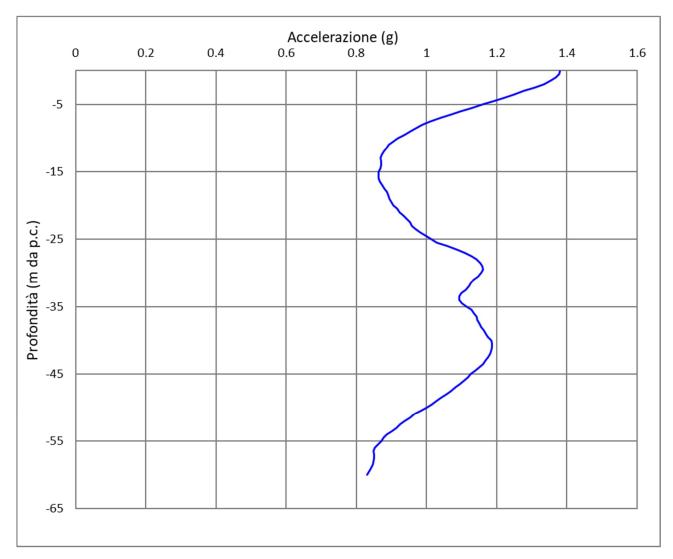


Fig. 32 - Accelerazione in output in funzione della profondità lungo la verticale "Roncole Verdi"

Fattore di amplificazione	Valore calcolato	Valore RER	Differenza
FA (0.1-0.5 s)	1.22	1.8	-32.23%
FA (0.4-0.8 s)	1.29	2.7	-52.15%
FA (0.5-1.5 s)	1.72	3.2	-46.21%
FA (0.7-1.1 s)	1.92	3.1	-38.02%
PGA/PGA ₀	1.14	1.7	-32.97%
SI/SI ₀ (0.1-0.5 s)	1.19	2.0	-40.54%
SI/SI ₀ (0.5-1.0 s)	1.51	3.0	-49.75%
SI/SI ₀ (0.5-1.5 s)	1.67	3.3	-49.49%

Tab. 19 - Fattori di amplificazione calcolati lungo la verticale "Roncole Verdi"

FN GEO Set	Elaborato	Data	Agg.	Pag.
DECEMBER OF STORES	MS 3 - Relazione illustrativa	Luglio 2022	1	48 di 80

3.3.5 RSL per il sito "San Rocco" 034007P99SCPT99

1 14 - 1 1 -	Profondità	(m da p.c.)	Spessore	(1.01/3)	Vs	C
Litologia	da	а	· (m)	γ (kN/m ³)	(m/s)	Curva di decadimento
Argilla 1	0.00	-9.00	9.00	18.00	185.00	Vucetic & Dobry, PI = 30
Argilla 2	-9.00	-17.00	8.00	18.50	220.00	Vucetic & Dobry, PI = 15
Argilla 3	-17.00	-45.00	28.00	18.50	250.00	Vucetic & Dobry, PI = 15
Ghiaia 1	-45.00	-80.00	35.00	20.00	350.00	Rollins
Ghiaia 2	-80.00	-110.00	30.00	20.00	450.00	Rollins
Bedrock	-110.00	-	_	22.00	750.00	-

Tab. 20 - Modello geofisico della verticale "San Rocco"

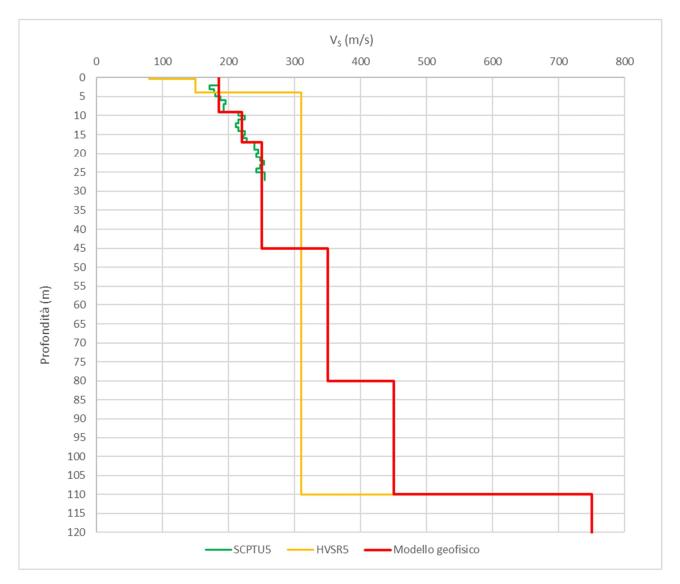


Fig. 33 - Discretizzazione della V_S lungo la verticale "San Rocco"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.rl.	MS 3 - Relazione illustrativa	Luglio 2022	1	49 di 80

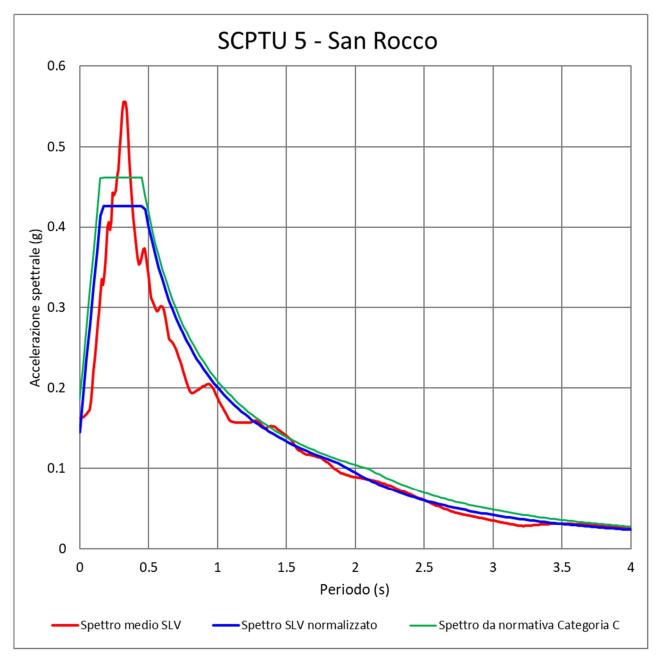


Fig. 34 - Spettro medio di risposta in accelerazione e spettro medio normalizzato per la verticale "San Rocco", confrontati con lo spettro semplificato da normativa per la categoria di sottosuolo C

a _{max} (T=0)	Fo	Tc*	η	S	Tb	Tc	Td	Сс
0.145	2.944	0.331	1.000	1.000	0.157	0.470	1.883	1.420

Tab. 21 - Parametri normalizzati per la verticale "San Rocco"

FN GEO Sel	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	50 di 80

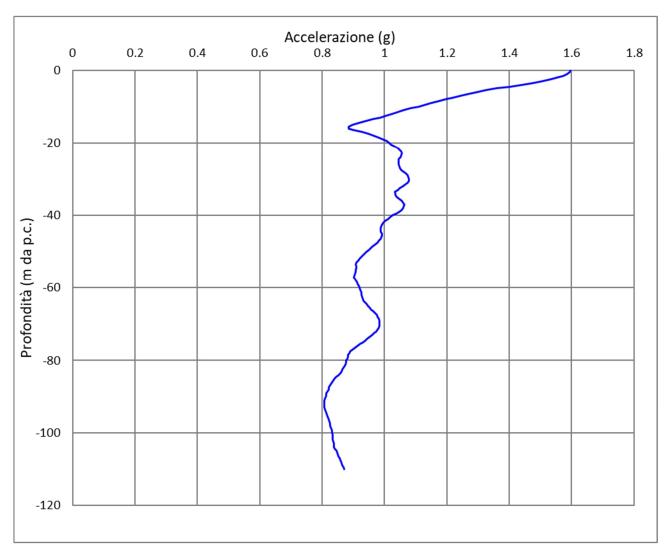


Fig. 35 - Accelerazione in output in funzione della profondità lungo la verticale "San Rocco"

Fattore di amplificazione	Valore calcolato	Valore RER	Differenza
FA (0.1-0.5 s)	1.45	1.8	-19.36%
FA (0.4-0.8 s)	1.81	2.7	-32.84%
FA (0.5-1.5 s)	2.00	3.2	-37.46%
FA (0.7-1.1 s)	1.89	3.1	-39.14%
PGA/PGA₀	1.31	1.7	-22.98%
SI/SI ₀ (0.1-0.5 s)	1.49	2.0	-25.46%
SI/SI ₀ (0.5-1.0 s)	1.78	3.0	-40.80%
SI/SI ₀ (0.5-1.5 s)	1.93	3.3	-41.49%

Tab. 22 - Fattori di amplificazione calcolati lungo la verticale "San Rocco"

FN GEO St.	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	51 di 80

3.3.6 RSL per il sito "Casa della Salute" (034007P92SCPT92)

Litalogia	Profondità	(m da p.c.)	Spessore	(IcN1/pp 3)	Vs	Cumus di decedimente
Litologia	da	а	· (m)	γ (kN/m ³)	(m/s)	Curva di decadimento
Argilla 1	0.00	-4.00	4.00	18.50	140.00	Vucetic & Dobry, PI = 30
Argilla 2	-4.00	-10.00	6.00	19.00	180.00	Sand Seed & Idriss
Sabbia	-10.00	-14.00	4.00	19.00	250.00	Sand Seed & Idriss
Sabbia ghiaiosa	-14.00	-62.80	48.80	19.50	310.00	Rollins
Bedrock	-62.80	-	_	22.00	520.00	-

Tab. 23 - Modello geofisico della verticale "Casa della Salute"

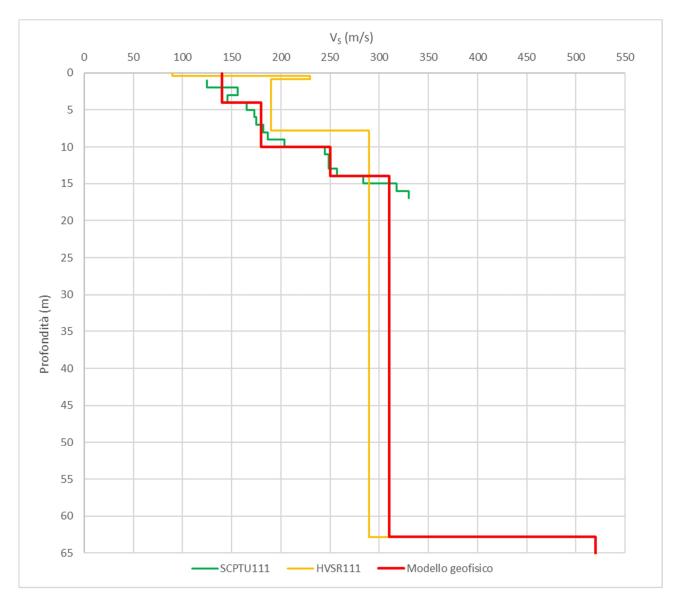


Fig. 36 - Discretizzazione della V_S lungo la verticale "Casa della Salute"

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.cl.	MS 3 - Relazione illustrativa	Luglio 2022	1	52 di 80

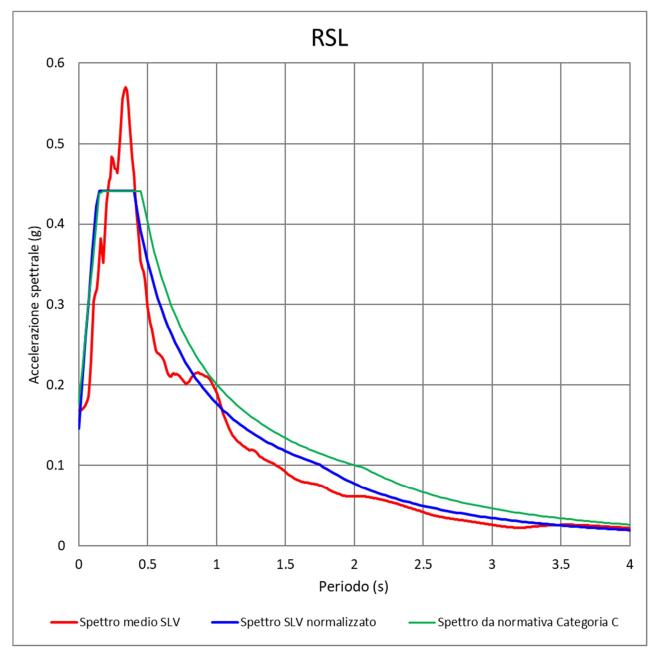


Fig. 37 - Spettro medio di risposta in accelerazione e spettro medio normalizzato per la verticale "Casa della Salute", confrontati con lo spettro semplificato da normativa per la categoria di sottosuolo C

a _{max} (T=0)	Fo	Tc*	h	S	Tb	Tc	Td	Сс
0.146	3.020	0.282	1.000	1.000	0.134	0.401	1.750	1.420

Tab. 24 - Parametri normalizzati per la verticale "Casa della Salute"

EN GEO S.d.	Elaborato	Data	Agg.	Pag.
ENGLESING BEOLOGY	MS 3 - Relazione illustrativa	Luglio 2022	1	53 di 80

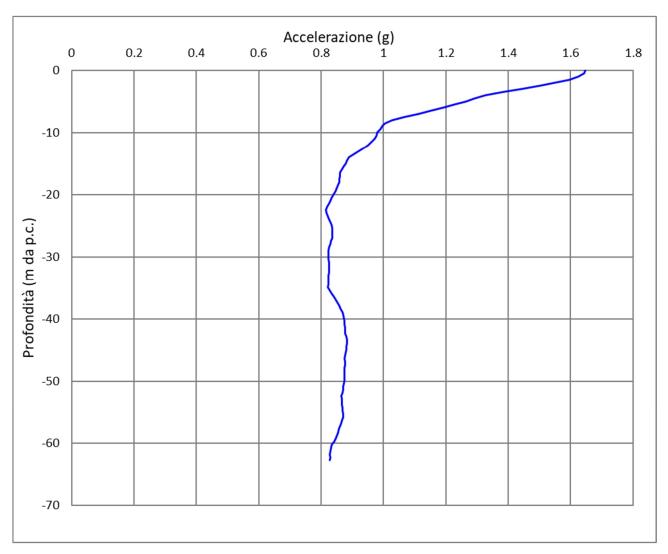


Fig. 38 - Accelerazione in output in funzione della profondità lungo la verticale "Casa della Salute"

Fattore di amplificazione	Valore calcolato	Valore RER	Differenza
FA (0.1-0.5 s)	1.53	1.8	-15.00%
FA (0.4-0.8 s)	1.72	2.7	-36.18%
FA (0.5-1.5 s)	1.76	3.2	-45.00%
FA (0.7-1.1 s)	1.77	3.1	-42.90%
PGA/PGA _o	1.41	1.7	-17.02%
SI/SI ₀ (0.1-0.5 s)	1.57	2.0	-21.50%
SI/SI ₀ (0.5-1.0 s)	1.80	3.0	-40.00%
SI/SI ₀ (0.5-1.5 s)	1.72	3.3	-47.88%

Tab. 25 - Fattori di amplificazione calcolati lungo la verticale "Casa della Salute"

FN GEO St.	Elaborato	Data	Agg.	Pag.
THE PARTY OF THE P	MS 3 - Relazione illustrativa	Luglio 2022	1	54 di 80

3.4 Considerazioni sui risultati delle analisi di terzo livello

Nella successiva tabella vengono presentati in sintesi i raffronti (in percentuale) tra i valori dei fattori di amplificazione calcolati con la RSL e quelli derivanti dall'applicazione dagli abachi RER.

Le differenze percentuali positive indicano valori più alti per i fattori da RSL rispetto a quelli degli abachi (un solo caso), mentre differenze negative il contrario. In sostanza le differenze percentuali negative indicano che gli abachi risultano più cautelativi della RSL.

La tabella utilizza, inoltre, l'effetto semaforo per evidenziare la maggiore o minore coerenza tra i fattori di amplificazione da RSL e quelli degli abachi.

	SCPTU1	SCPTU2	SCPTU3	SCPTU4	SCPTU5	SCPTU11
FA _{PGA}	-16.7%	-1.0%	-15.0%	-33.0%	-23.0%	-17.0%
FA _{SA1 0.1-0.5}	-14.5%	2.1%	-16.8%	-32.2%	-19.4%	-15.0%
FA _{SA2 0.4-0.8}	-35.9%	-25.7%	-28.7%	-52.2%	-32.8%	-36.2%
FA _{SA3 0.7-1.1}	-45.1%	-43.2%	-39.9%	-46.2%	-37.5%	-45.0%
FA _{SA4 0.5-1.5}	-39.6%	-39.6%	-33.1%	-38.0%	-39.1%	-42.9%
FH _{SI1 0.1-0.5}	-21.7%	-5.6%	-24.6%	-40.5%	-25.5%	-21.5%
FH _{SI 0.5-1.0}	-39.8%	-33.3%	-34.6%	-49.7%	-40.8%	-40.0%
FH _{SI 0.5-1.5}	-47.7%	-44.1%	-43.4%	-49.5%	-41.5%	-47.9%

Tab. 26 - Raffronto tra i risultati delle analisi di secondo livello e terzo livello

L'analisi della Tab. 26 evidenzia che gli abachi sovrastimano, ma di poco, lo scuotimento ai bassi periodi (T<0,5s) mentre la sovrastima tende aumentare significativamente all'aumentare del periodo. Nel complesso, quindi gli abachi, come del resti era da attendersi, risultano maggiormente cautelativi alla RSL.

Un ulteriore confronto può essere effettuato a livello di spettri di risposta in pseudoaccelerazione.

In Fig. 39 viene proposto il confronto tra gli spettri di risposta in pseudoaccelerazione da RSL e lo spettro semplificato per la categoria di sottosuolo C da NTC 2018, per un tempo di ritorno T_R uguale a 475 anni (corrispondente a una probabilità di superamento del 10% in 50 anni).

Anche in questo caso è evidente che l'amplificazione locale determina una considerevole picco tra 0.1 e 0.4 s circa, con valori di accelerazione spettrale molto più elevati di quelli dello spettro semplificato, mentre oltre tale periodo, in generale, lo spettro semplificato sovrastima le accelerazioni, a parte modeste sovrastime a periodi differenti nei sei siti considerati.

EN GEO S.c.I.	Elaborato	Data	Agg.	Pag.
DECEMBER OF STOLES	MS 3 - Relazione illustrativa	Luglio 2022	1	55 di 80

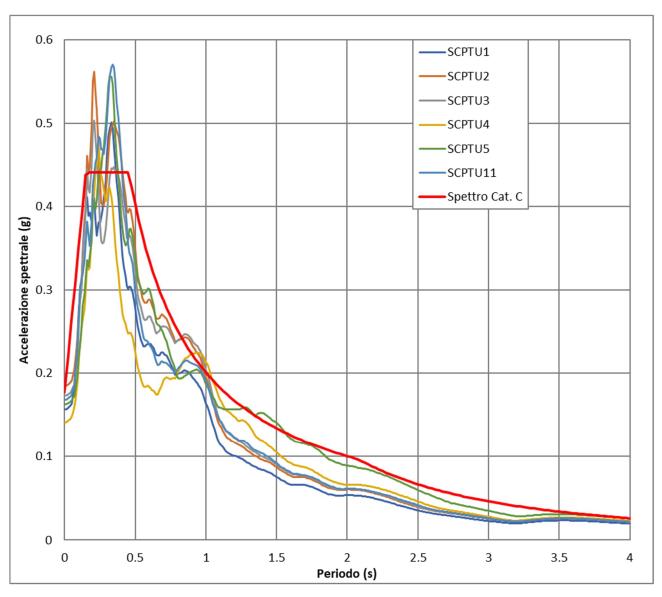


Fig. 39 - Confronto tra gli spettri di risposta in pseudoaccelerazione da RSL e lo spettro semplificato per la categoria di sottosuolo C da NTC 2018

3.4.1 Ipotesi di bedrock a maggiori profondità

Ulteriori analisi RSL, basate su modelli sismostratigrafici che prevedono Vs≥800 m/s a profondità maggiori di 200 m (dato ipotizzabile in base a considerazioni stratigrafiche e dati di letteratura, es. Mascandola et al., 2018), hanno evidenziato scuotimenti di pari o minore intensità per l'intervallo di periodi T d'interesse per la microzonazione sismica (T≤1,5 secondi).

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	56 di 80

A titolo esemplificativo in Fig. 40 viene riportato il confronto tra gli spettri di risposta in pseudoaccelerazione per la prova SCPTU1 (sito Scuole Medie) con bedrock a 60 m e a 200 m.

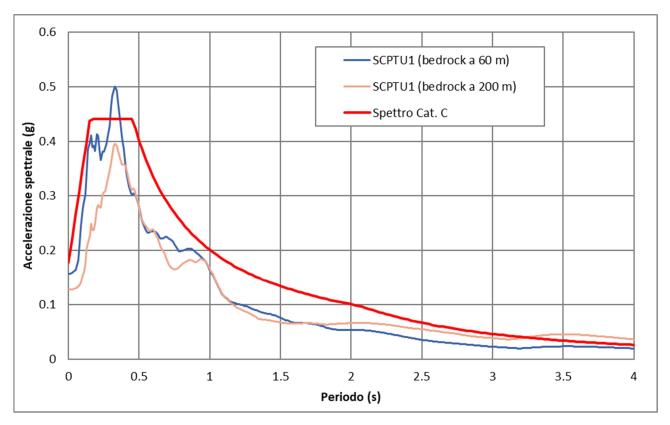


Fig. 40 - Confronto tra gli spettri di risposta in pseudoaccelerazione per la prova SCPTU1 (sito Scuole Medie) con bedrock a 60 m e a 200 m

Pertanto, per la stima degli scuotimenti in superficie si è scelto di fare riferimento agli spettri di risposta ottenuti con analisi RSL basate sui modelli sismostratigrafici rappresentati nelle figure 21, 24, 27, 30, 33 e 36.

3.5 Verifica del rischio di liquefazione

Il rischio di liquefazione è stato valutato prendendo in considerazione n° 18 verticali tra quelle indagate nel presente studio mediante prove CPTU e SCPTU.

A FNOSO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	57 di 80

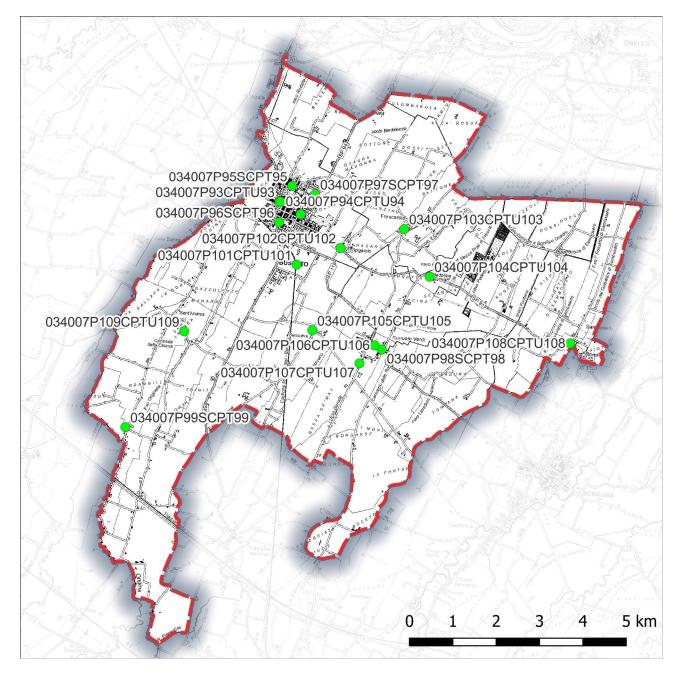


Fig. 41 - Stralcio ubicazione indagini utilizzate per verifica a liquefazione

Per liquefazione s'intende un processo d'incremento della pressione del fluido interstiziale che causa, in un terreno non coesivo saturo (sabbia, limo non plastico), la diminuzione della resistenza a taglio a seguito dello scuotimento sismico, dando luogo a deformazioni permanenti significative.

La liquefazione consiste quindi in una diminuzione della resistenza del terreno, a seguito del raggiungimento della condizione di fluidità. La perdita totale della resistenza viene raggiunta quando la pressione dell'acqua che riempie gli interstizi arriva a uguagliare

FNCFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	58 di 80

la pressione di confinamento, rendendo nulle le tensioni efficaci trasmesse attraverso le particelle solide. Una volta che il terremoto ha innescato il processo di liquefazione, la massa del suolo resta in movimento fino a che non raggiunge una nuova condizione di stabilità.

Il rischio di liquefazione può essere stimato con metodi semplificati da prove CPTU mediante il calcolo dell'indice del potenziale di liquefazione LPI di *Iwasaki et al.* (1982). Le prove CPTU sono preferibili alle semplici CPT per la migliore ripetibilità delle misure e per la continuità dei profili penetrometrici. L'indice LPI¹¹ è un parametro di sintesi che, mediante un valore numerico compreso tra 0 e 100, quantifica i possibili effetti della liquefazione in superficie, tenendo conto di severità dell'azione sismica, e di profondità, spessore e valore del fattore di sicurezza degli strati liquefacibili.

Per poter valutare la severità degli effetti *lwasaki* ha proposto la scala riportata in Tab. 27.

Valori di IL	Rischio di liquefazione
I <u>L</u> = 0	Molto basso
0 < 1∟ ≤ 5	Basso
5 < 1∟ ≤ 15	Alto
15 < IL	Molto alto

Tab. 27 - Valutazione del rischio di liquefazione secondo Iwasaki

Valutazioni più recenti riportate da *Sonmez* (2003), basate su sismi di magnitudo inferiore a quelli utilizzati da *Iwasaki* consigliano tuttavia di rimodulare le classi di pericolosità come riportato in Tab. 28.

LPI = 0.00 - Liquefaction risk null
LPI between 0.00 and 2.00 - Liquefaction risk low
LPI between 2.00 and 5.00 - Liquefaction risk moderate
LPI between 5.00 and 15.00 - Liquefaction risk high
LPI > 15.00 - Liquefaction risk very high

Tab. 28 - Valutazione del rischio di liquefazione secondo Sonmez

L'indice LPI è calcolato con riferimento ad una verticale di prova. Gli effetti bi- e tridimensionali sono trascurati. Tale semplificazione può condurre talora a stime errate. In

¹¹ LPI = Liquefation Potential Index è tradotto con IL = Indice di Liquefazione nella cartografia di MS

FNCFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	59 di 80

particolare, se la liquefazione in un sito è limitata a lenti isolate, la liquefazione in superficie può non manifestarsi anche per valori significativi di LPI. Viceversa, uno strato liquefatto sottile, profondo, molto diffuso ed esteso può determinare rottura del terreno e "lateral spreading" anche per bassi valori di LPI. La variabilità ed eterogeneità naturale delle condizioni stratigrafiche e geotecniche può spiegare la non sempre buona correlazione tra i valori dell'indice LPI e le evidenze di liquefazione.

L'indice LPI è definito nel modo seguente:

$$LPI = \int_{0}^{20} FW(LPIz) dz$$

Dove:

- F(z) è una variabile con valori compresi tra 0 e 1, definita ad ogni profondità 0≤
 z ≤ 20_m in funzione del valore che, a quella profondità, assume il fattore di sicurezza alla liquefazione FSL
- w(z) è un fattore di peso della profondità.

In sostanza il rischio di liquefazione tiene conto del fattore di sicurezza calcolato strato per strato, ma ne valuta la significatività su tutto lo spessore del deposito.

Il fattore di sicurezza alla liquefazione è definito nel modo seguente:

$$FSL = \frac{CRR_{7.5}}{CSR} \cdot MSF \cdot k_{\sigma}$$

dove:

CRR_{7.5}=Rapporto di resistenza ciclica per M=7.5 (Ciclic Resistence Ratio)

MSF = fattore di scala della magnitudo (Magnitude Scale Factor)

Kσ=Fattore di correzione per la pressione di confinamento

CSR = rapporto di tensione ciclica (Ciclic Stress Ratio)

Nelle verifiche effettuate nel presente studio, per il calcolo del CRR è stato utilizzato il metodo NCEER (modificato da *Robertson* 2009) implementato dal programma CLIQ della *GeoLogismiki*. In Fig. 42 viene presentata, in forma di *flow-chart*, la procedura di calcolo di CRR utilizzata dal programma per la verifica con il metodo NCEER.

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	60 di 80

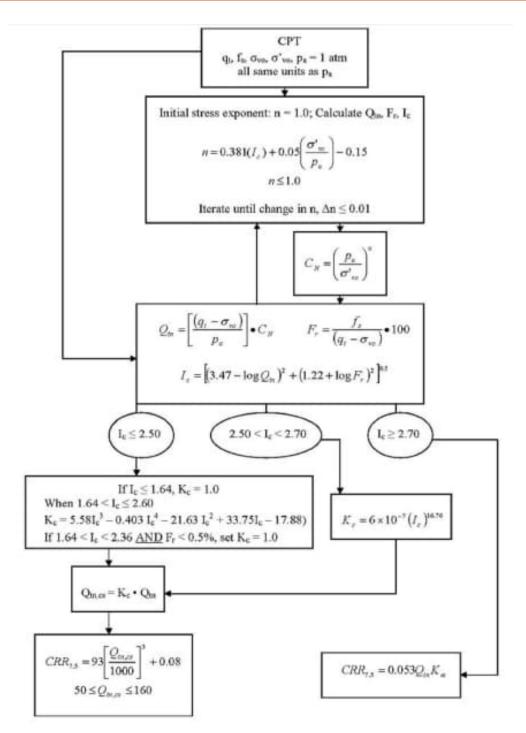


Fig. 42 - Flow chart della procedura di verifica NCEER modificata da Roberson (2009)

Esaminando la zonazione Sismogenetica ZS9 dell'IMCS, il valore massimo della zona di riferimento in cui è incluso il Comune di Busseto (Zona 913, cfr. Fig. 43) è pari a Mw=5.9. Si tratta di eventi sismici originati da movimenti prevalentemente compressivi, a NW, e

S FNOTO	Elaborato	Data	Agg.	Pag.
EN GEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	61 di 80

distensivi, a SE, con meccanismi trascorrenti nelle zone di svincolo, che dissecano la continuità longitudinale delle strutture.

Il maggior numero di terremoti che si verificano nella zona 913 presenta il proprio ipocentro a profondità comprese tra 12 e 20 km, con profondità efficace di 13 km.

Sulla base dei meccanismi focali, sono previsti valori "cautelativi" di massima magnitudo (Mwmax2) pari a = 6.14. E' questo, pertanto, il valore utilizzato, cautelativamente, per le verifiche a liquefazione.

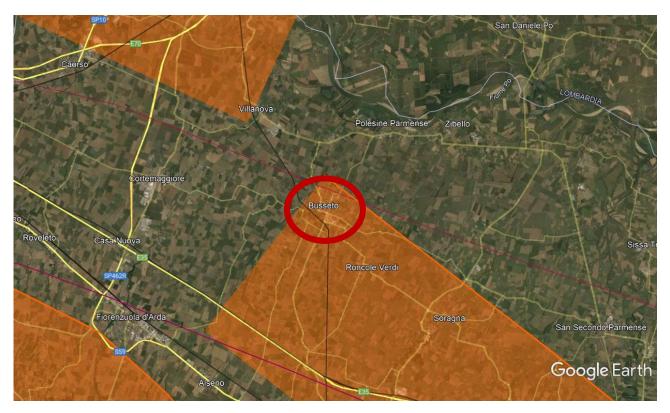


Fig. 43 - Classificazione ZS9

Altro parametro indispensabile è la massima accelerazione attesa al sito, ricavata in questo caso dall'analisi di RSL e variabile da 0.14 a 0.18 ag.

Nelle verifiche, a titolo cautelativo, è stato impostato il livello di falda con terremoto in atto a 1 m da p.c.

3.5.1 Analisi dei risultati

Per ciascuna prova è stato prodotto un report che contiene sia i grafici interpretativi della prova stessa (resistenze penetrometriche, litologia, ecc.), sia i grafici relativi alla liquefazione ed in particolare (cfr. Fig. 44):

- Il confronto tra CSR e CRR

FNOFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	62 di 80

- La variazione del fattore di sicurezza con la profondità
- La cumulata del valore di LPI con la profondità
- La cumulata del valore dei cedimenti con la profondità

Nel complesso, come era da attendersi, viste le caratteristiche litostratigrafiche del territorio, il rischio di liquefazione risulta quasi nullo in relazione alle caratteristiche deposizionali dei diversi siti.

In Tab. 29 vengono rappresentati i valori di LPI calcolati mediante il metodo di Robertson; su un totale di n° 18 prove, solo 3 presentano un indice maggiore di 1 ma ricadono comunque all'interno della categoria "rischio di liquefazione moderato" poiché presentano valori compresi tra 2 e 5 (classificazione secondo Sonmez (2009)). Tutte le altre indagini si possono definire a rischio di liquefazione molto basso con un fattore minore dell'unità.

FNCEO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	63 di 80

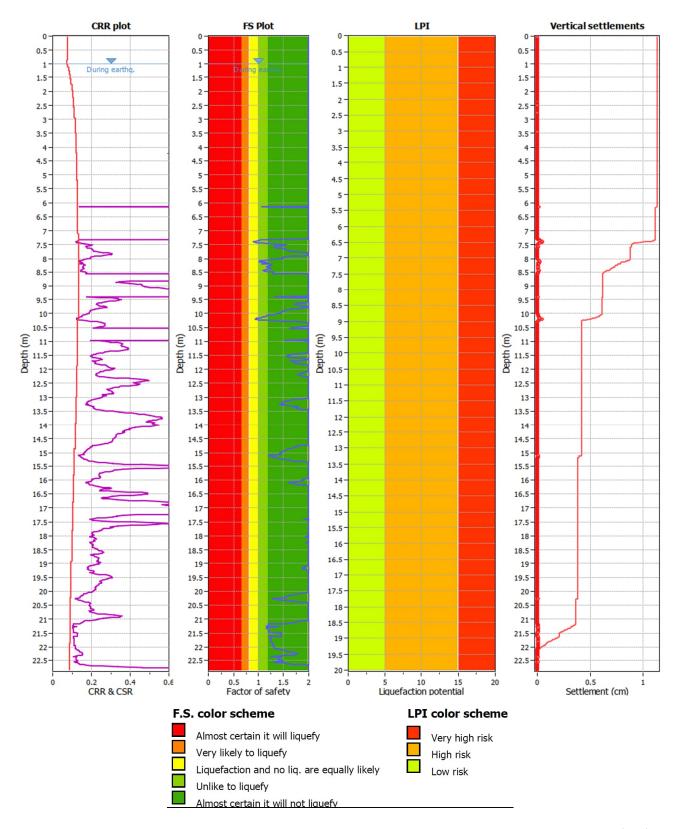


Fig. 44 - Grafici di CSR-CRR, dei fattori di sicurezza FS e dell'indice di liquefazione (LPI), valutati per la prova 034007P95SCPT95 "Scuole medie"

EN GEO S.I.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	64 di 80

Tipologia di prova	Codice prova	LPI
CPTU	034007P100CPTU100	0.344
CPTU	034007P101CPTU101	0.217
CPTU	034007P102CPTU102	0.216
CPTU	034007P103CPTU103	3.262
CPTU	034007P104CPTU104	3.291
CPTU	034007P105CPTU105	0.166
CPTU	034007P106CPTU106	0.201
CPTU	034007P107CPTU107	0.00
CPTU	034007P108CPTU108	0.00
CPTU	034007P109CPTU109	0.343
SCPTU	034007P95SCPT95	0.043
SCPTU	034007P96SCPT96	0.459
SCPTU	034007P97SCPT97	2.101
SCPTU	034007P98SCPT98	0.278
SCPTU	034007P99SCPT99	0.00
SCPTU	034007P92SCPT92	0.727
CPTU	034007P93CPTU93	0.102
CPTU	034007P94CPTU94	0.242

Tab. 29 - Valori di LPI calcolati

Le verifiche effettuate consentono di escludere il rischio di liquefazione nella maggior parte del territorio indagato, fatta eccezione per un'area presso l'estremità nord-est del Capoluogo (034007P97SCPT97) e per le frazioni di Frescarolo (034007P103CPTU103) e Madonna dei Prati (034007P104CPTU104), che presentano un rischio di liquefazione moderato.

Ciò non esclude tuttavia la possibilità che su verticali diverse si possano ottenere fattori di rischio più elevati. Permane, pertanto, l'obbligo di verifica a liquefazione in fase di progettazione, come previsto dalle NTC.

4. CRITICITÀ DEL METODO

Lo studio di 3° livello è stato basato su un numero considerevole di indagini e prove che hanno consentito una buona definizione delle problematiche sul territorio.

È importante, tuttavia, precisare che i risultati in termini di amplificazione sismica riportati nei paragrafi precedenti sono riferiti ai soli modelli esposti nel par. 3.3, cioè a modelli che tengono conto della sola sismostratigrafia riscontrata nei n° 6 punti in cui si disponeva di un modello geofisico sufficientemente approfondito.

ENGEO S.I.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	65 di 80

Considerata la variabilità litologica riscontrata, gli studi effettuati non possono essere considerati esaustivi di tutti i potenziali assetti litostratimetrici e geofisici del territorio comunale.

I risultati in termini di liquefazione, discussi nel par. 3.5.1, tengono anch'essi conto della stratigrafia riscontrata nel corso delle indagini e mettono in luce come il territorio del Comune di Busseto sia caratterizzato da rischio nullo a moderato.

In questo caso, l'omogeneità dei risultati fa ritenere che siano state indagate la maggior parte delle situazioni potenzialmente critiche in termini di liquefazione.

Come già detto, tuttavia, ciò non esclude la possibilità che su verticali diverse si possano ottenere fattori di rischio più elevati. Permane, pertanto, l'obbligo di verifica a liquefazione in fase di progettazione, come previsto dalle NTC.

La problematica principale relativa ai metodi di analisi della risposta sismica locale utilizzati, a parte il problema ben noto dell'adozione del modello 1D, è la definizione del bedrock sismico.

4.1 Considerazioni sul bedrock sismico

La definizione del *bedrock* sismico, cioè del sismostrato che presenta velocità delle onde di taglio $V_S \ge 800$ m/s, costituisce un elemento di notevole importanza nell'ambito delle valutazioni di risposta sismica locale.

In letteratura (Martelli et alii¹², 2013 e Martelli et alii¹³, 2014) è indicato che "il maggiore contrasto di impedenza si ha in genere tra la base del sintema emiliano-romagnolo superiore (AES), datata tra 350.000 e 450.000 anni, e la base del subsintema AES6, datata circa 230.000-250.000 anni (RER e ENI-Agip, 1998)".

In realtà oggi si tende ad individuare il *bedrock* sismico, soprattutto in pianura, in corrispondenza di un elevato contrasto di impedenza sismica, cioè laddove il rapporto tra le velocità dello strato superficiale e quello più profondo supera il valore di 2÷2.5.

In ogni caso, è bene evidenziare che il *bedrock* sismico, inteso come lo strato entro (e sotto) il quale la velocità delle onde sismiche permane superiore agli 800 m/s, risulta pressoché non individuabile nella zona studiata con i metodi diretti e, comunque, difficilmente raggiungibile anche con metodi indiretti, vista la sua elevata profondità.

Nel caso del territorio comunale di Busseto, per l'individuazione del bedrock sismico si è fatto affidamento ai risultati delle prove HVSR eseguite appositamente per questo studio, adeguatamente correlate con le conoscenze geologiche e stratigrafiche disponibili.

L. Martelli, L. Calabrese, G. Ercolessi, P. Severi, G. Tarabusi, D. Pileggi, S. Rosselli, L. Minarelli, F. Pergalani, M. Compagnoni, G. Vannucchi, C. Madiai, J. Facciorusso, V. Fioravante, D. Giretti, M. Mucciarelli, E. Priolo, G. Laurenzano – (2014) Cartografia speditiva dell'amplificazione e del rischio di liquefazione nelle aree epicentrali del terremoto dell'Emilia 2012 (ML=5.9). Atti del 32 convegno GNGTS 2013

¹³ L. Martelli, P. Severi, G. Biavati, S. Rosselli, R. Camassi, E. Ercolani, A. Marcellini, A. Tento, D. Gerosa, D. Albarello, F. Guerrini, E. Lunedei, D. Pileggi, F. Pergalani, M. Compagnoni, V. Fioravante e D. Giretti (2014) *Analysis of the local seismic hazard for the stability tests of the main bank of the Po River (northern Italy)*, Boll. Geof. Teor. Appl., 55, 119-134

EN GEO S.L.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	66 di 80

PROGETTO LIVELLO

Terzo livello di approfondimento

Da tali misure si è potuta riscontrare la presenza di un importante contrasto d'impedenza alla profondità di circa -60 m da p.c., che corrisponde al passaggio tra il Subsintema di Agazzano e il Subsintema di Villa Verucchio, dove è stata riscontrata una velocità delle onde di taglio compresa tra 520 e 550 m/s.

Questo *bedrock* è stato attribuito a cinque delle verticali di analisi RSL. Fa eccezione la zona dell'abitato di San Rocco, che rientra nella MOPS della Zona 2, in cui il *bedrock* è stato collocato a -110 m da p.c. con una velocità di 750 m/s.

EN GEO S.I.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	67 di 80

5. ELABORATI CARTOGRAFICI

Tutte le cartografie di seguito descritte sono state redatte alla scala 1.5.000, in un'unica tavola che rappresenta le aree urbanizzate, come illustrato in Fig. 45.

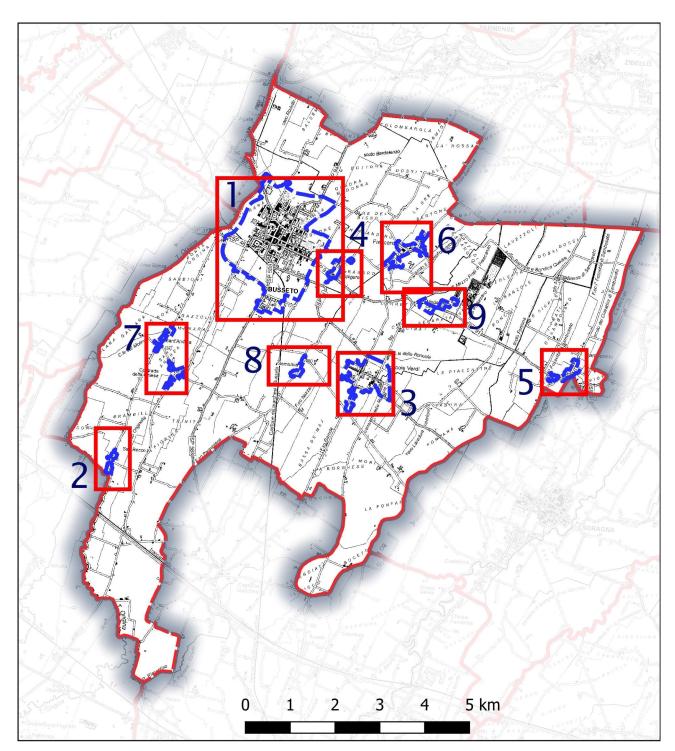


Fig. 45 - Quadro d'unione dei tagli cartografici adottati

ENGEO S.A.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	68 di 80

Si precisa che, alle luce delle nuovo indagini realizzate non è stato necessario modificare la carta GeoTec realizzata per studio MS1 e MS2 (OCDPC 171/2014) e pertanto la carta di riferimento è ancora quella prodotta nello studio precedente, redatto da Ambiter Srl. Tale tavola, pertanto, non sarà descritta nel seguito del presente capitolo.

5.1 Carta delle indagini

Nella Carta delle indagini sono riportate le ubicazioni di tutte le indagini geognostiche e/o sismiche inserite nel database geognostico a corredo dello studio.

Tale cartografia costituisce un aggiornamento di quella già redatta per gli studi di microzonazione di 2° livello.

Le prove sono state distinte in base alla tipologia come raffigurato nella legenda riportata in stralcio nella seguente Fig. 46.

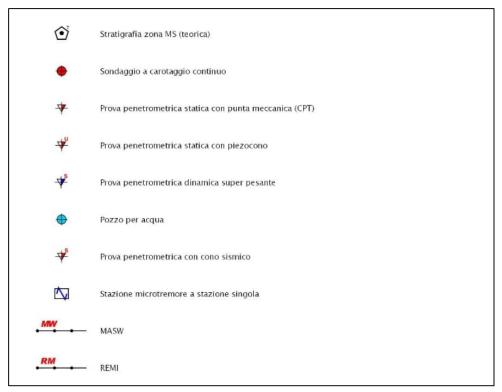


Fig. 46 - Legenda della Carta delle indagini

In Tab. 30 vengono riportati il numero e la tipologia di indagini presenti sul territorio studiato, acquisite dal precedente studio di 2° livello, dall'archivio degli scriventi o realizzate ad uopo per lo studio di 3° livello.

ENGEO S.A.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	69 di 80

TIPO PROVA	provenienti da studio di 2º livello MS	provenienti da archivio Engeo	effettuate per il 3° livello MS	<u>TOTALE</u>
Sondaggi a carotaggio continuo	7	-	-	7
Prove CPT	23	-	-	23
Prove CPTU	3	2	10	15
Prove SCPTU	-	1	5	6
Prove SCPT	1	-	-	1
Pozzi per acqua	20	-	-	20
Prove HVSR	37	-	15	52
Prova MASW	4	-		4
Prove REMI	14	-	-	14

Tab. 30 - Riepilogo delle indagini presenti sul territorio comunale

5.2 Carta delle frequenze naturali dei terreni

Sulla base di tutti i dati tromografici disponibili, sia contenuti nell'Archivio Comunale, sia di nuova acquisizione, è stata redatta la Carta delle frequenze naturali dei terreni.

Tale cartografia costituisce un aggiornamento di quella già redatta per gli studi di microzonazione di 2° livello.

In questa carta sono stati riportati tutti i punti di misura (52), con associati i risultati delle singole prove. In particolare, sono stati indicati il valore F_0 del picco significativo, corrispondente alla frequenza di risonanza fondamentale (frequenza principale) e, quando presente, un secondo picco significativo (frequenza secondaria), meno evidente del primo (F_1) .

Sono stati tralasciati i picchi con frequenze superiori ai 20 Hz, in quanto di scarso significato ai fini del presente studio.

Gli indirizzi tecnici a cui si è fatto riferimento prescrivono, per rendere graficamente più evidenti le variazioni in relazione alla posizione, di utilizzare colorazioni differenti per distinguere le prove a seconda della frequenza principale ottenuta. Inoltre, sono state utilizzate simbologie diverse a seconda che la prova sia caratterizzata, in corrispondenza della frequenza principale, da un alto contrasto di impedenza (H/V> 3) o da più bassi contrasti di impedenza (ampiezza H/V≤3) come raffigurato nella legenda riportata in Fig. 47.

ENGEO S.A.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	70 di 80

Fig. 47 - Legenda della Carta delle frequenze

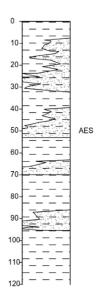
Osservando la Carta delle frequenze naturali dei terreni, si evince che, in Comune di Busseto, raramente si osservano picchi di ampiezza significativa, tali da evidenziare elevati contrasti d'impedenza; picchi che, in generale, quando rilevabili, sono associati a frequenze molto variabili.

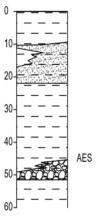
5.3 Carta delle microzone omogenee in prospettiva sismica (MOPS)

La Carta delle microzone omogenee in prospettiva sismica (MOPS), rappresenta il documento fondamentale del primo livello di approfondimento. Nel presente studio viene proposta una revisione di tale cartografia alla luce delle verifiche effettuate per il terzo livello di approfondimento, consistite in particolare nella verifica a liquefazione delle zone definite come zone di attenzione per instabilità nel precedente studio.

In questa cartografia il territorio in esame viene distinto a seconda dell'appartenenza a una delle seguenti categorie:

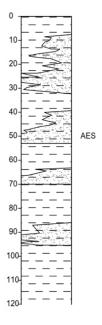
- 1. zone stabili. Si tratta di zone con affioramento di un substrato rigido e morfologia pianeggiante o poco acclive, nelle quali non si ipotizzano effetti locali di alcuna natura e in cui non sono richiesti ulteriori approfondimenti.
- 2. zone stabili suscettibili di amplificazioni locali. Si tratta di aree in cui sono attese amplificazioni del moto sismico, causate dall'assetto litostratigrafico e/o morfologico locale.
- 3. zone di attenzione per instabilità. Si tratta di zone nelle quali effetti sismici attesi e predominanti, oltre i fenomeni di amplificazione, sono riconducibili a deformazioni permanenti del territorio, quali instabilità di versante (frane attive e quiescenti), liquefazioni e densificazione.


EN GEO S.cl.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	71 di 80


Dalla lettura della Carta delle microzone omogenee in prospettiva sismica si osserva che in corrispondenza delle aree esaminate in Comune di Busseto, si possono trovare tre differenti tipologie di zone descritte nei seguenti paragrafi.

5.3.1 Zone stabili suscettibili di amplificazioni locali

Zona 1 - Successione stratigrafica caratterizzata, nei primi 30 m, da uno strato superiore composto da una miscela di argille e limi, in subordine sabbie, e da uno strato inferiore di sabbie debolmente sabbie ghiaiose. substrato geologico, stimato ad oltre 100 m di profondità, è composto dall'alternanza di terreni coesivi sovraconsolidati (CO) e terreni granulari debolmente cementati (GR).


Zona 2 - Successione stratigrafica caratterizzata, nei primi 30 m, da uno strato superiore composto da una miscela di limi e argille, da uno strato intermedio di sabbie е sabbie debolmente ghiaiose e da uno strato inferiore di argille e argille limose. Il substrato geologico, stimato ad oltre 100 m di profondità, è composto dall'alternanza di terreni coesivi sovraconsolidati (CO) e terreni granulari debolmente cementati (GR).

EN GEO S.A.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	72 di 80

5.3.2 Zone di attenzione per instabilità

Zona 3 - Zona di Attenzione per Liquefazioni - successione stratigrafica caratterizzata, nei primi 30 m, da uno strato superiore composto da una miscela di argille e limi, in subordine sabbie, e da uno strato inferiore di sabbie sabbie debolmente ghiaiose. substrato geologico, stimato ad oltre 100 m di profondità, è composto dall'alternanza di terreni sovraconsolidati (CO) e terreni granulari debolmente cementati (GR).

5.4 Carta della velocità delle onde di taglio S

In ottemperanza ai riferimenti tecnici citati nelle premesse, è stata redatta una Carta delle velocità delle onde di taglio $S(V_s)$ riferita a tutte le aree oggetto di studio.

Tale cartografia costituisce un aggiornamento di quella già realizzata per gli studi di microzonazione di 2° livello.

In essa sono ubicati tutti i punti di misura, distinguendoli a seconda della tipologia di prova effettuata (MASW, prova tromografica, ReMi e prova penetrometrica con cono sismico) e indicando il corrispondente valore di Vs₃₀ (in m/s), dove:

$$Vs_{30} = \frac{30}{\sum \frac{h_i}{Vs_i}}$$

 h_i = spessore (in metri) dello strato i-esimo (fino alla profondità di 30 m); Vs_i = velocità (in m/s) dello strato i-esimo (fino alla profondità di 30 m).

5.5 Carte di microzonazione sismica

Nelle Carte di microzonazione sismica di Livello 3, in scala 1:5.000, il territorio è suddiviso sulla base dei seguenti parametri rappresentativi dello scuotimento sismico, calcolati per un tempo di ritorno TR=475 anni, con smorzamento ζ =5% (cfr. capitolo 3):

ENGEO S.I.	Elaborato	Data	Agg.	Pag.
	MS 3 - Relazione illustrativa	Luglio 2022	1	73 di 80

- FA_{PGA} = PGA/PGA₀, dove PGA₀ è l'accelerazione massima orizzontale a periodo
 T=0 al suolo di riferimento e PGA e l'accelerazione massima orizzontale a periodo T=0 alla superficie del sito;
- FA_{SA} = SA/SA₀, dove SA₀ è l'integrale dello spettro di risposta in accelerazione al suolo di riferimento e SA è l'integrale dello spettro di risposta in accelerazione alla superficie del sito per prefissati intervalli di periodi T:
 - SA1 per 0,1s≤T≤0,5s,
 - SA2 per 0,4s≤T≤0,8s,
 - SA3 per 0,7s≤T≤1,1s,
 - SA4 per 0,5s≤T≤1,5s;
- FHSI = SI/SIO, dove SIO è l'integrale dello spettro di risposta in velocità (Intensità di Housner) al suolo di riferimento e SI l'integrale dello spettro di risposta in velocita (o corrispondente grandezza di Intensità di Housner) alla superficie del sito per prefissati intervalli di periodi T:
 - SI1 per 0,1s≤T≤0,5s,
 - SI2 per 0,5s≤T≤1,0s,
 - SI3 per 0,5s≤T≤1,5s.

Nella seguente tabella (cfr. Tab. 31) sono indicate le analisi di Risposta Sismica Locale utilizzate per calcolare i sopraindicati parametri, al variare della microzona e del taglio cartografico considerato, specificando sito, prova SCPTU e paragrafo cui fare riferimento.

Zona	Tipo di zona	Taglio cartografico	Sito RSL	SCPTU	Paragrafo
	stabile		Scuole medie	034007P95SCPT95	3.3.1
1	suscettibile di amplificazioni	1, 4, 7	Istituto comprensivo	034007P96SCPT96	3.3.2
	locali		Casa della salute	034007P92SCPT92	3.3.6
1	stabile suscettibile di amplificazioni locali	3, 5, 8	Roncole Verdi	034007P98SCPT98	3.3.4
2	stabile suscettibile di amplificazioni locali	2	San Rocco	034007P99SCPT99	3.3.5
3	di attenzione per liquefazione	1, 6, 9	Conad	034007P97SCPT97	3.3.3

Tab. 31 - Associazione tra i differenti settori di territorio e l'analisi di Risposta Sismica Locale che ha consentito di determinare i parametri rappresentativi dello scuotimento sismico

FN OFO	Elaborato	Data	Agg.	Pag.
EN GEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	74 di 80

In Fig. 48 è riportata la legenda utilizzata per accorpare i parametri di amplificazione per le Carte di microzonazione sismica, così come indicato negli standard di rappresentazione SRAI.

Parametro di amplificazione	Simbolo
1.1 - 1.2	
1.3 - 1.4	
1.5 - 1.6	
1.7 - 1.8	
1.9 - 2.0	
2.1 - 2.2	

Fig. 48 - Legenda adottata per l'accorpamento dei fattori di amplificazione nelle zone stabili suscettibili di amplificazioni locali

Inoltre, all'interno delle Carte di microzonazione, utilizzando la legenda riportata in Fig. 49, sono stati inseriti anche i risultati delle prove di verifica alla liquefazione, descritte nel par. 3.5 e riportate in All. 20.

Verticale di verifica alla liquefazione con indicato il valore di IL

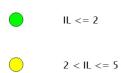


Fig. 49 - Legenda adottata per la visualizzazione della verifica alla liquefazione

5.6 Carte dello scuotimento atteso

Quali ultimi elaborati grafici, come prescritto dall'Allegato A2 della delibera regionale, sono state redatte le carte della distribuzione sul territorio dei valori di H_{SM} , parametro che esprime lo scuotimento atteso al sito in valore assoluto (accelerazione in cm/s²).

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.l.	MS 3 - Relazione illustrativa	Luglio 2022	1	75 di 80

Tale parametro è definito come il prodotto dell'*Acceleration Spectrum Intensity* (ASI_{UHS}), valore integrale dello spettro di riferimento in accelerazione, calcolato per un determinato intervallo di periodi, diviso per ΔT e moltiplicato per il fattore di amplificazione in accelerazione (FA) calcolato per lo stesso intervallo di periodi:

$$H_{SM} = \frac{ASI_{UHS}}{\Lambda T} \times FA$$

Gli intervalli di periodi considerati sono:

- o 0,1s≤T≤0,5s (cfr. Carta di microzonazione sismica H_{SM}),
- o 0,4s≤T≤0,8s (cfr. Carta di microzonazione sismica H_{SM 0,4-0,8 s}),
- o 0,7s≤T≤1,1s (cfr. Carta di microzonazione sismica H_{SM 0,7-1,1 s}),
- o 0,5s≤T≤1,5s (cfr. Carta di microzonazione sismica H_{SM 0,5-1,5 s}).

0

I valori di $ASI_{UHS}/\Delta T$, per 0,1s $\leq T\leq 0$,5s, per i punti della griglia INGV, per un tempo di ritorno T_R uguale a 475 anni (corrispondente a una probabilità di superamento del 10% in 50 anni), sono forniti dal file all_4 -coord.kmz, nella cartella $Allegato_4$.zip, disponibile nella pagina web dedicata agli indirizzi per gli studi di microzonazione sismica a cura del Servizio Geologico, Sismico e dei Suoli della Regione Emilia-Romagna.

Per gli altri intervalli di periodo sono, invece, stati calcolati, sempre per $T_R=475$ anni, dallo spettro su suolo A utilizzando i dati di accelerazione spettrale (Se(T)) forniti da INGV¹⁴ nell'ambito degli studi per la redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274.

In particolare, considerato che i dati di accelerazione spettrale vengono forniti per periodi di 0.10, 0.15, 0.30, 0.40, 0.50, 0.75, 1.50, 2.00 secondi, per valutare i valori di ASI negli intervalli di periodo sopra citati è stato necessario procedere a interpolazioni, per ottenere i valori a 0.7, 0.8 e 1.1 secondi.

Una volta calcolati, i valori di H_{SM} sono stati riportati nelle varie carte di scuotimento atteso, grazie a un'etichetta riferita a ciascun poligono esaminato; mentre il colore indica l'appartenenza dello stesso a una delle classi con intervallo pari a 100 definite dal Servizio Geologico, Sismico e dei Suoli della Regione Emilia-Romagna.

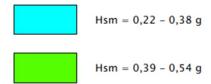


Fig. 50 - Legenda adottata per l'accorpamento dei valori di H_{SM}

14 Montaldo V., Meletti C., 2007. Valutazione del valore della ordinata spettrale a 1sec e ad altri periodi di interesse ingegneristico. Progetto DPC-INGV S1, Deliverable D3, http://esse1.mi.ingv.it/d3.html

A FNOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.rl.	MS 3 - Relazione illustrativa	Luglio 2022	1	76 di 80

6. BIBLIOGRAFIA

- Albarello D., Castellaro S. (2011): TECNICHE SISMICHE PASSIVE: INDAGINI A STAZIONE SINGOLA, Ingegneria Sismica Anno XXVIII - n. 2 - 2011, Appendice I e II, pp 50-62
- Ambiter s.r.l. (2018): Studi di microzonazione sismica con approfondimenti di primo e secondo livello del comune di Busseto, con dichiarazione di conformità da parte della Commissione Tecnica per il monitoraggio degli studi di microzonazione sismica
- Baldi M., Baldini U., Bevivino R., Castagnetti S., Daminelli R., Gianferrari C., Marcellini A., Martelli L. e Tento A. (2010): UNIONE TERRE DI CASTELLI: VALIDAZIONE DELLA MICROZONAZIONE SISMICA DI II LIVELLO (2010) 29° Convegno Nazionale Gruppo Nazionale Geofisica della Terra Solida, Prato
- Bernini M., Papani G. (1987) Alcune considerazioni sulla struttura del margine appenninico emiliano tra lo Stirone e l'Enza (e sue relazioni con il sistema del Taro). L'Ateneo Parmense - Acta Naturalia, 24, 219-240.
- Boulanger, R. W. and Idriss, I. M. (2014) "CPT and SPT Based Liquefaction Triggering Procedures", Report UCD/CGM- 14/01, Department of Civil and Environmental Engineering, University of California, Davis, CA, 138 pp.
- Gruppo di lavoro MS (2008): INDIRIZZI E CRITERI PER LA MICROZONAZIONE SISMICA. Conferenza delle Regioni e delle Province Autonome - Dipartimento della Protezione Civile, Roma, 3 vol. e Dvd https://www.protezionecivile.it/it/pubblicazione/indirizzi-e-criteri-la-microzonazione-sismica
- GUIDELINES FOR THE IMPLEMENTATION OF THE H/V SPECTRAL RATIO TECHNIQUE ON AMBIENT VIBRATIONS MEASUREMENTS, PROCESSING AND INTERPRETATION -SESAME European research project, dicembre 2004
- Idriss, I.M. and Boulanger, R.W. (2004). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Proceedings 11th International Conference on Soil Dynamics and Earthquake Engineering. Berkeley, 32-56.
- Iwasaki, T., Tatsuoka, F., Tokida, K, and Yasuda, S, (1978), "A Practical Method for Assessing Soil Liquefaction Potential Based on Case Studies at Various Sites in Japan", 2nd International Conference on Microzonation for Safer Construction Research and Application, pp. 885-896,
- Marcellini A., Martelli L, Tento A., Daminelli R. (2009): L'amplificazione sismica negli "indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica"

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	77 di 80

- Martelli L., L. Calabrese, G. Ercolessi, P. Severi, G. Tarabusi, D. Pileggi, S. Rosselli, L. Minarelli, F. Pergalani, M. Compagnoni, G. Vannucchi, C. Madiai, J. Facciorusso, V. Fioravante, D. Giretti, M. Mucciarelli, E. Priolo, G. Laurenzano (2014) Cartografia speditiva dell'amplificazione e del rischio di liquefazione nelle aree epicentrali del terremoto dell'Emilia 2012 (ML=5.9). Atti del 32 convegno GNGTS 2013
- Martelli L., P. Severi, G. Biavati, S. Rosselli, R. Camassi, E. Ercolani, A. Marcellini, A. Tento, D. Gerosa, D. Albarello, F. Guerrini, E. Lunedei, D. Pileggi, F. Pergalani, M. Compagnoni, V. Fioravante e D. Giretti (2014) Analysis of the local seismic hazard for the stability tests of the main bank of the Po River (northern Italy), Boll. Geof. Teor. Appl., 55, 119-134
- Meletti C. e Valensise G., (2004): ZONAZIONE SISMOGENETICA ZS9-APP. 2 AL RAPPORTO CONCLUSIVO. In: "Gruppo di Lavoro MPS (2004). Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCm 3274 del 20 marzo 2003".
 Rapporto per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici
- MICROZONAZIONE SISMICA, UNO STRUMENTO CONSOLIDATO PER LA RIDUZIONE DEL RISCHIO. L'esperienza della Regione Emilia-Romagna (2012) – Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli
- Montaldo V., Meletti C., 2007. Valutazione del valore della ordinata spettrale a 1sec e ad altri periodi di interesse ingegneristico. Progetto DPC-INGV S1, Deliverable D3, http://esse1.mi.ingv.it/d3.html
- National Center for Earthquake Engineering Research (1998) Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils.
- NOTE ILLUSTRATIVE DELLA CARTA GEOLOGICA D'ITALIA alla scala 1:50.000 FOGLIO 181, Parma Nord – REGIONE EMILIA-ROMAGNA, S.EL.CA. s.r.l., Firenze 2009
- Newmark NM, Hall WJ, Earthquake Spectra and Design, EERI Monograph Series, 1982
- Robertson, P.K. and Wride, C.E., (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, Ottawa, 35(3): 442-459.
- Robertson, P.K., (2010). Evaluation of Flow Liquefaction and Liquefied strength Using the Cone Penetration Test. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 136(6): 842-853
- Robertson P.K., Cabal K.L. (2015) "Guide to Cone Penetration Testing for Geotechnical Engineering 6th edition. Gregg Drilling & testing Inc.
- Rollins K.M., Evans M.D., Diehl N.B., Daily W.D. (1998) Shear modulus and damping relationships for gravels. JGGE, 124, 396-405
- Seed H. B., Idriss I. M. 1970 Soil moduli and damping factors for dynamic response analyses – University of California Berkeley Structural Engineers and Mechanics

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.r.I.	MS 3 - Relazione illustrativa	Luglio 2022	1	78 di 80

- SONMEZ H. (2003) Modification to the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol-Turkey). Environ. Geology 44(7), pp. 862–871
- Vucetic M., Dobry R. 1991 Effect of Soil Plasticity on Cyclic Response Journal of Geotechnical Engineering, Vol. 117, Issue 1

SHOTO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	79 di 80

7. ALLEGATI

Nel corso dello studio sono stati redatti, oltre alla presente relazione Illustrativa, i seguenti elaborati grafici:

Elaborato		scala
1	Carta delle indagini	1:5.000
2	Carta delle frequenze naturali dei terreni	1:5.000
3	Carta delle microzone omogenee in prospettiva sismica (MOPS)	1:5.000
4	Carta della velocità delle onde di taglio S (Vs)	1:5.000
5	Carta di microzonazione sismica Livello 3 - FH _{PGA}	1:5.000
6	Carta di microzonazione sismica Livello 3 - FA _{SA 0.1s < To < 0.5s}	1:5.000
7	Carta di microzonazione sismica Livello 3 - FA _{SA 0.4s < To < 0.8s}	1:5.000
8	Carta di microzonazione sismica Livello 3 - FA _{SA 0.7s < To < 1.1s}	1:5.000
9	Carta di microzonazione sismica Livello 3 - FA _{SA 0.5s < To < 1.5s}	1:5.000
10	Carta di microzonazione sismica Livello 3 - FH _{S 0.1s < To < 0.5s}	1:5.000
11	Carta di microzonazione sismica Livello 3 - FH _{IS 0.5s < To < 1.0s}	1:5.000
12	Carta di microzonazione sismica Livello 3 - FH _{IS 0.5s < To < 1.5s}	1:5.000
13	Carta di microzonazione sismica Livello 3 - H _{SM}	1:5.000
14	Carta di microzonazione sismica Livello 3 - H _{SM 0.4s-0.8s}	1:5.000
15	Carta di microzonazione sismica Livello 3 - H _{SM 0.7s-1.1s}	1:5.000
16	Carta di microzonazione sismica Livello 3 - H _{SM 0.5s-1.5s}	1:5.000

Inoltre, alla presente relazione, sono allegati

- All. 17 Prove HVSR;
- All. 18 Prove penetrometriche con punta elettrica e piezocono;
- All. 19 Prove penetrometriche con sismocono;
- All. 20 Verifiche a liquefazione

contenenti le indagini e le verifiche di nuova esecuzione.

FN OFO	Elaborato	Data	Agg.	Pag.
ENGEO S.A.	MS 3 - Relazione illustrativa	Luglio 2022	1	80 di 80