

Attuazione dell'articolo 11 dalla legge 24 giugno 2009, n.77

MICROZONAZIONE SISMICA

Relazione illustrativa

Regione Emilia-Romagna

Comune di Prignano sulla Secchia

etto realizzatore	Data
Geol. Valeriano Franchi	Luglio 2018

Responsabile

Arch. Gianluca Giullari

Soggetto realizzatore

Dott. Geol. Valeriano Franchi

Consulenza *Prof. Dario Albarello*

Collaboratori

Dott. Geol. Alessandro Ghinoi Dott. Geol. Gianluca Vaccari Dott. Geol. Marco Sacchi Dott. Francesco Venuta

INDICE CONTENUTI

1. Introduzione	4
2. Inquadramento territoriale e cartografico	7
3. Definizione della pericolosità sismica di base e degli eventi sismici di riferimento	10
3.1. Sismicità del territorio comunale	12
4. Assetto geologico e geomorfologico dell'area	22
4.1. Inquadramento geologico	
4.1.1. Il lineamento Interno e il Settore strutturale meridionale (territorio di Pala	_
4.1.2. Settore Centrale e lineamento Mediano (territori di Palagano e Montefiori	no) 27
4.1.3. Settore Settentrionale, sistema della Val Rossenna e Vicariante della Val Rossenna (territorio di Prignano sulla Secchia)	20
4.1.4. Settore della collina (territorio di Prignano)	
4.1.5. Analisi morfostrutturale e strutture tettoniche trasversali	30
4.2. Geologia dell'area oggetto di analisi di MS3	34
4.3. Inquadramento geomorfologico	35
4.3.1. Frane	35
4.3.2. Altri depositi di versante di varia genesi	37
4.3.3. Morfologie legate all'azione delle acque di ruscellamento superficiale	38
4.4. Geomorfologia dell'area oggetto di analisi di MS3	41
5. Modello del sottosuolo	46
5.1. Descrizione generale per i territori dell'Unione dei Comuni Montani "Valli Dol	ο,
Dragone e Secchia"	46
5.1.1. Unità Liguridi	
5.1.2. Unità Subliguri	49
5.1.3. Unità di pertinenza toscana o di dubbia attribuzione paleogeografica	
5.1.4. Successione Epiligure	51
5.2. Descrizione specifica del modello del sottosuolo relativa al territorio comuna	le di
Prignano sulla Secchia e dell'area oggetto di MS3	53
6. Dati geotecnici e geofisici	56
7. Interpretazioni e incertezze	
8. Metodologie di elaborazione e risultati	
8.1. La microzonazione sismica di I e II livello nell'area d'indagine (sintesi)	67

8.2. Analisi di III livello per l'area d'indagine	69
8.2.1. Inversione congiunta delle curve di dispersione ed H/V	70
8.2.2. Analisi della risposta sismica locale (1D)	74
8.2.3. Caratteristiche del corpo di frana dedotte dai risultati della modellaz	ione 1D79
8.2.4. Analisi di risposta sismica locale 2D	79
8.2.5. Calcolo del massimo spostamento co-sismico tramite l'approccio di	
9. Elaborati cartografici	92
9.1. Carta delle indagini	93
9.2. Carta delle Vs	94
9.3. Carta delle frequenze	95
9.4. Carta delle MOPS	96
9.5. Carta di microzonazione sismica (MS_0203)	97
10. Confronto con la distribuzione dei danni degli eventi passati	98
11. Bibliografia	99

1. INTRODUZIONE

Su incarico dell'Unione di Comuni Montani Valli Dolo, Dragone e Secchia (Provincia di Modena) è stato eseguito uno studio di **Microzonazione Sismica di III livello** del territorio comunale di Prignano sulla Secchia.

Lo studio è stato realizzato nel rispetto delle seguenti disposizioni normative:

- Atto di indirizzo e coordinamento tecnico ai sensi dell'art. 16, c. 1, della L.R. 20/2000 per "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica" approvato con Delibera dell'Assemblea Legislativa Regione Emilia-Romagna n° 112 del 2 maggio 2007;
- D.G.R. 16 dicembre 2013, n° 1919: "Approvazione dei criteri per gli studi di microzonazione sismica ed assegnazione dei contributi di cui all'ordinanza del capo dipartimento della protezione civile n.52/2013 a favore degli enti locali";
- D.G.R. 21 dicembre 2015, n° 2193: "Art. 16 della l.r. n.20 del 24/3/2000. Approvazione aggiornamento dell'atto di coordinamento tecnico denominato "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica", di cui alla Deliberazione dell'Assemblea Legislativa 2 maggio 2007, n. 112.

Inoltre, per gli aspetti tecnici, si è fatto riferimento al documento "Indirizzi e criteri per la microzonazione sismica" (ICMS) approvati dal Dipartimento della Protezione Civile e dalla Conferenza delle Regioni e delle Province Autonome e successive modifiche e integrazioni¹.

L'assetto geologico, geomorfologico e sismico di base viene descritto per l'intero territorio dell'Unione, con dettaglio crescente per il territorio comunale di Prignano sulla Secchia e per l'area oggetto di analisi di MS3. Le indagini geognostiche e geofisiche sono state limitate all'area identificata, di comune accordo con l'Ufficio Tecnico comunale, come oggetto delle analisi di MS3. Tale area (Figura 1), già individuata nello studio di Microzonazione Sismica di I e II livello come suscettibile di amplificazione e di instabilità, coincide con un corpo di frana considerato "quiescente" dalla letteratura scientifica e dai documenti tecnici consultati. Allo stesso tempo, il corpo di frana rappresenta il fenomeno franoso di gran lunga maggiormente distruttivo in epoca storica, con l'evento principale documentato al 1790, interessa attualmente un tratto di viabilità strategica (SP 24) per i collegamenti tra il paese di Saltino ed il Capoluogo e, in ultima istanza, con la SP486R, con evidenti ripercussioni sulla Condizione Limite per l'Emergenza (CLE). Infine, il corpo di frana in esame coinvolge direttamente alcuni edifici privati e strutture pubbliche.

¹ Gruppo di lavoro MS, 2008. "Indirizzi e criteri per la microzonazione sismica". Conferenza delle Regioni e delle Province Autonome – Dipartimento della Protezione Civile, Roma, 3 vol. e Dvd. Link breve: https://goo.gl/Od0XBo

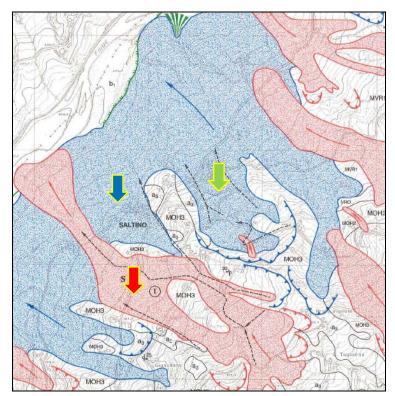


Figura 1 – Stralcio della cartografia dei disseti relativi all'area di Saltino, contenuta nell'Atlante dei centri abitati instabili dell'Emilia-Romagna, a cura di A. Annovi e G. Simoni (fascicolo nr. 4 – Provincia di Modena) (1993) – Consiglio Nazionale delle Ricerche, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche – Previsione e prevenzione di eventi franosi a grande rischio, Programma Speciale SCAI, Studio Centri Abitati Instabili). Legenda – poligoni rossi con frecce rosse sottili: frane attive; poligoni blu con frecce blu sottili: frane quiescenti; frecce nere tratteggiate, sottili: drenaggi e/o fossi di scolo. Freccia blu grande: settore interessato dalle frane del 1931 e 1939; freccia rossa grande: settore considerato di più frequente attivazione; freccia verde grande: settore coinvolto dalla grande frana del 1790 ed oggetto della presente MS3.

Nonostante la sua attuale quiescenza (se si escludono frane superficiali di limitata estensione che ne hanno di recente interessato la scarpata), la frana costituisce elemento di pericolosità che interferisce e può interferire con elementi vulnerabili, generando condizioni di rischio idrogeologico potenzialmente di livello più alto all'interno del territorio comunale, come già accaduto in passato: è un dato di fatto che frane di grandi dimensioni, già avvenute in passato, possano riattivarsi con pari magnitudo anche dopo un lasso di tempo molto ampio². Per questo motivo, tenuto conto delle risorse complessive allocate per lo studio di MS3 dell'Unione, si è deciso di concentrare su questa sola area le indagini e le analisi di MS3 per il Comune di Prignano sulla Secchia.

² Ghinoi, A., Freddi, R., Pasuto, A., Soldati, M., 2014. Geomorphological analysis of the historic landslide of Sottrù (Badia Valley, Italy) reactivated on December 13, 2012, in: Analysis and Management of Changing Risks for Natural Hazards. Padova, p. 1–8 ISBN 9788867873074.

Mordini, A., 2003. Frane e rovine nella storia della montagna modenese attraverso i documenti. Rassegna Frignanese 33, 49-82.

Bertolini, G., Pellegrini, M., 2001. The landslides of the Emilia Apennines (northern Italy) with reference to those which resumed activity in the 1994–1999 period and required Civil Protection interventions. Quaderni di Geologia Applicata 8, 27–74.

Gli obiettivi del lavoro sono stati i seguenti:

- 1. Ricostruzione della geometria del corpo di frana attraverso un rilevamento geomorfologico di dettaglio e sondaggi geognostici e geofisici.
- 2. Determinazione dei valori dei parametri di resistenza del terreno, funzionali alle analisi di stabilità.
- 3. Determinazione delle frequenze naturali dei terreni, ai fini della individuazione di fenomeni di risonanza significativi.
- 4. Determinazione della profondità del bedrock sismico o della principale superficie di risonanza.
- 5. Determinazione dei profili di Vs.
- 6. Analisi di risposta sismica 1D e 2D sul corpo di frana per ricavare i fattori di amplificazione della PGA a dell'intensità di Housner nonché gli spettri di risposta in superficie sia in termini di pseudo-accelerazione che di pseudo-velocità.
- 7. Definizione della pericolosità sismica locale attraverso il calcolo degli spostamenti indotti dal sisma atteso sul corpo di frana.
- 8. Perimetrazione dettagliata dell'area indagata e dei valori indicativi della pericolosità locale.

Tutte le attività sono state svolte nel rispetto delle specifiche di cui agli "Standard di rappresentazione e archiviazione informatica" elaborati dalla Commissione Tecnica per il monitoraggio degli studi di microzonazione sismica (OPCM 3907/2010, art. 5, comma 7), versione 4.0b dell'ottobre 2015.

2. INQUADRAMENTO TERRITORIALE E CARTOGRAFICO

Il territorio comunale di Prignano sulla Secchia si colloca nel settore occidentale del medio Appennino Modenese, al confine con la Provincia di Reggio Emilia (Figura 2), delimitato ad ovest dal Fiume Secchia e ad est dal territorio comunale di Serramazzoni (Figura 3).

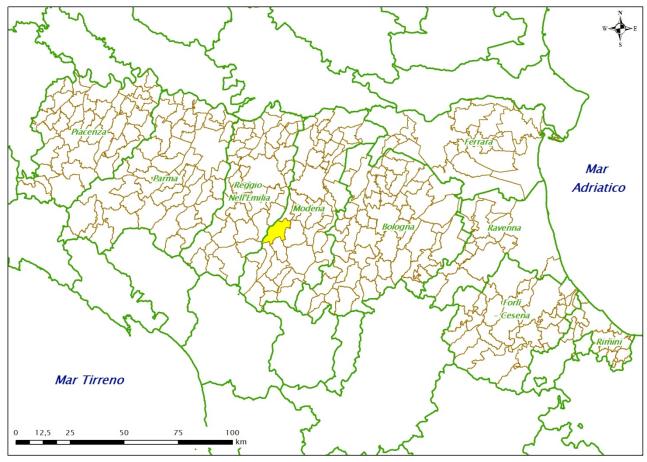
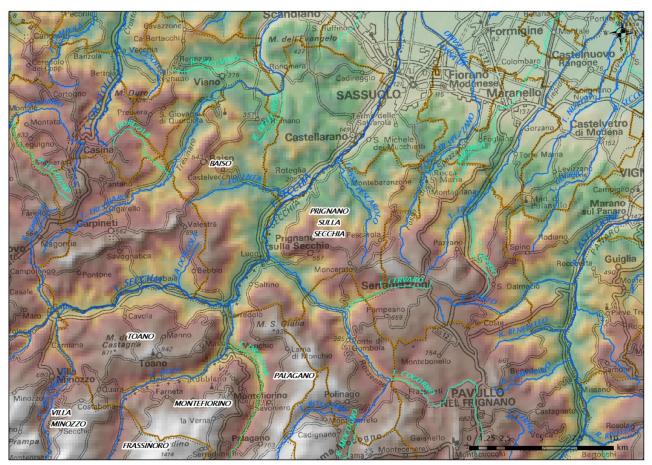



Figura 2 - Inquadramento amministrativo regionale del territorio comunale di Prignano sulla Secchia (in giallo in figura).

Figura 3 - Inquadramento geografico-fisico del territorio comunale di Prignano sulla Secchia. Il DEM (modello digitale delle quote) mostra le differenti fasce altimetriche: da quelle con valori relativamente più alti, in grigio chiaro, a quelle con i valori relativamente più bassi, in verde e azzurro.

Il territorio comunale di Prignano sulla Secchia fa parte dei settori altimetrici di collina, bassa montagna e media montagna, con quote sul livello del mare (dati da modello digitale delle quote) che variano da un minimo di circa 160 m lungo il corso del Fiume Secchia, nell'estremità settentrionale del territorio comunale, agli oltre 850 m nella zona di S. Pellegrinetto, lungo il confine orientale.

Il clima è caratterizzato, nel periodo 1991-2008, da precipitazioni totali annue, in media, di 831 mm e temperature medie annue di 12,6°C, pari, rispettivamente, ad una variazione di -24 mm e +0.5°C rispetto al periodo 1961-1990³.

Nella cartografia regionale, il territorio è compreso nelle Tavole alla scala 1:25.000:

- nr. 218SE denominata "Carpineti",
- nr. 219NO denominata "Sassuolo",
- nr. 219SO denominata "Serramazzoni",
- nr. 235NE denominata "Montefiorino",
- nr. 236NO denominata "Lama Mocogno",

_

³ Atlante Idroclimatico dell'Emilia-Romagna - http://www.arpa.emr.it/sim/?clima

nelle Sezioni alla scala 1:10.000:

- nr. 218120 denominata "Baiso",
- nr. 218160 denominata "San Cassiano",
- nr. 219060 denominata "Sassuolo",
- nr. 219090 denominata "Roteglia",
- nr. 219100 denominata "Montebaranzone",
- nr. 219130 denominata "Prignano sulla Secchia",
- nr. 219140 denominata "Serramazzoni",
- nr. 235040 denominata "Montefiorino",
- nr. 236010 denominata "Gombola",

e negli Elementi alla scala 1:5.000:

- nr. 218122 denominata "Levizzano",
- nr. 218161 denominata "Lugo",
- nr. 218162 denominata "Saltino",
- nr. 218163 denominata "Cerredolo",
- nr. 219063 denominata "Montegibbio",
- nr. 219091 denominata "Vezzano",
- nr. 219092 denominata "Barighelli",
- nr. 219093 denominata "Castelvecchio",
- nr. 219094 denominata "Roteglia",
- nr. 219101 denominata "Montagnana",
- nr. 219103 denominata "Campodolio",
- nr. 219104 denominata "Montebaranzone",
- nr. 219131 denominata "Moncerato",
- nr. 219132 denominata "Casa Matteazzi",
- nr. 219133 denominata "Talbignano",
- nr. 219134 denominata "Prignano sulla Secchia",
- nr. 219143 denominata "Pompeano",
- nr. 219144 denominata "Serramazzoni",
- nr. 235041 denominata "Monchio",
- nr. 235044 denominata "Massa",
- nr. 236014 denominata "S. Martino".

3. DEFINIZIONE DELLA PERICOLOSITÀ SISMICA DI BASE E DEGLI EVENTI SISMICI DI RIFERIMENTO

Il dato di partenza per un'analisi della potenzialità sismica di un territorio è certamente la ricostruzione delle strutture tettoniche maggiormente attive nel tempo geologico più recente, all'incirca l'ultimo milione di anni (neotettonica). Sono queste le strutture che possono, se confermate anche da dati macrosismici e/o sismologici, ragionevolmente costituire sorgente di terremoti anche nel prossimo futuro.

L'analisi neotettonica di un'area si esegue attraverso l'esame di una serie innumerevole di dati di natura geologica, morfoneotettonica, idrogeologica, e idrochimica, che concorrono a definire, appunto, il regime tettonico di quell'area, con l'individuazione di strutture geologiche rilevanti, per giungere eventualmente alla definizione del loro potenziale sismogenetico, il potenziale, cioè, di generare terremoti.

Il territorio comunale di Prignano sulla Secchia, dal punto di vista geologico-strutturale, è parte degli Appennini settentrionali, una catena a pieghe e sovrascorrimenti costituita dalla sovrapposizione di unità tettoniche NE-vergenti, la cui formazione è conseguenza della collisione, in epoca cenozoica, tra la Placca Europea e la Placca Adria (Africana). Attualmente, la convergenza tra le due placche ha velocità pari a circa 6-8 mm all'anno, con vergenza all'incirca NO, e si sviluppa lungo un margine di placca ampio e complesso, ove placche e blocchi crostali minori controllano la distribuzione e la cinematica delle deformazioni. Tale convergenza determina una diffusa sismicità ed un quadro deformativo complesso, caratterizzato da un settore (quello tirrenico) con prevalenti campi tensionali distensivi, e da un settore (quello adriatico) ove prevalgono campi tensionali compressivi (Boccaletti et al., 2011).

In modo più specifico, per quanto riguarda le strutture tettoniche quaternarie più recenti ed attive, la parte meridionale del territorio comunale di Prignano sulla Secchia si colloca all'interno di un sistema di faglie pressoché continuo che si estende lungo il crinale appenninico, coincidente approssimativamente con il fronte di *thrust* delle Unità Toscane (sebbene in esso siano presenti anche faglie trascorrenti e normali di importanza minore) (rettangolo contrassegnato col numero 1 in Figura 4).

Il crinale appenninico è caratterizzato da sollevamenti localizzati, pleistocenici ed attuali, e da moderata sismicità. La soluzione dei meccanismi focali ha mostrato la presenza di due distinti campi deformativi a differenti profondità:

- quello più superficiale, a profondità inferiori a 15 km, è caratterizzato da eventi sismici di magnitudo da bassa a moderata, con meccanismi focali principalmente estensionali e, in maniera minore, trascorrenti e compressivi; gli eventi distensivi più importanti sono peculiari del versante tirrenico della catena, capaci di determinare sismi con magnitudo pari a 6 (nei bacini della Garfagnana, della Lunigiana e del Mugello);
- quello relativo alla crosta intermedia, a profondità comprese tra 15 e 25 km, è interessato da eventi sismici tipici di un campo tensionale a carattere principalmente compressivo; tali eventi possono, almeno in parte, essere correlabili all'attività del principale

sovrascorrimento crostale, responsabile del raddoppiamento del basamento e della successione carbonatica al di sotto della catena.

A profondità superiori a 35 km, sebbene siano disponibili pochi meccanismi focali, gli eventi sismici mostrano un carattere predominante di tipo compressivo, legati ad una struttura attiva che interessa la Moho. Secondo un'interpretazione alternativa, questi eventi sismici profondi potrebbero essere messi in relazione alla flessura della litosfera continentale africana in subduzione (Boccaletti et al., 2011).

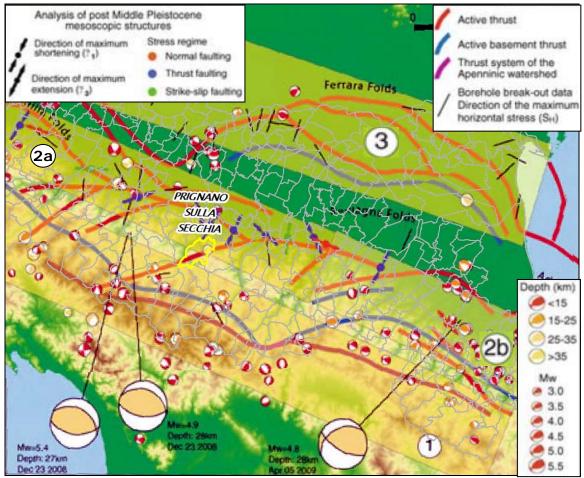


Figura 4 - Sintesi delle strutture recenti e attive del settore esterno degli Appennini settentrionali, con sovrapposte le soluzioni dei meccanismi focali (Boccaletti et al., 2004), i campi tensionali da analisi mesoscopiche (Ghiselli e Martelli, 1997) e i dati di *breakout* da pozzo (Mariucci e Muller, 2003). Tre meccanismi focali in dettaglio relativi agli eventi principali di sequenze sismiche che hanno interessato gli Appennini il 23 dicembre 2008 ed il 5 aprile 2009 (da dati INGV). I numeri nei cerchi indicano i principali sistemi di faglie: (1) Catena appenninica; (2a) Margine Appennini-Pianura (settore nord-occidentale); (2b) Margine Appennini-Pianura (settore sud-orientale); (3) Pieghe Emiliane e Ferraresi sepolte. (Fonte: Boccaletti et al., 2011). Il poligono con contorno giallo individua in carta il territorio comunale di Prignano sulla Secchia.

Gran parte del settore settentrionale del Comune si colloca, invece, all'interno di un sistema di faglie coincidente con il fronte di *thrust* del margine Appennino-Pianura (PTF) – settore nordoccidentale – (rettangolo contrassegnato col numero 2a in Figura 4). L'attività del fronte, in tale settore, è messa in luce sia da una chiara impronta morfotettonica, sia dall'analisi di linee sismiche. I sovrascorrimenti principali mostrano una disposizione *enechelon*, con perfetta corrispondenza tra la traccia dei sistemi di *thrust* sepolti e la direzione di massimo stress

orizzontale (S_H) (Figura 4). Ciò risulta coerente con i campi di stress post-Pleistocene Medio ed attuale, derivati dall'analisi di strutture mesoscopiche e dall'analisi strutturale delle zone interessate da vulcani di fango. In modo particolare, le deformazioni attive lungo queste strutture determinano valori massimi delle variazioni di quota relative, in corrispondenza del margine Appennino-Pianura, come desumibile da livellazioni geodetiche. Infine, misure DInSAR sembrano confermare l'attività di movimento del fronte di *thrust* pedeappenninico (Boccaletti et al., 2011).

In prossimità del territorio comunale (alcuni kilometri a sud), i meccanismi focali relativi al sistema di faglie della catena appenninica rivelano la presenza di sismi superficiali (< 15 km), di Mw circa pari a 4, con campo di stress principalmente estensionale/trascorrente (e secondariamente compressivo/trascorrente), legato probabilmente ad un campo di deformazione secondario presente in corrispondenza del tetto del sistema di *thrust* che interessa il crinale appenninico (Bonini, 2007) o, alternativamente, ad un sistema di faglie normali, superficiali (< 15 km), attive su piani di *thrust* deattivati (Bonini and Tanini, 2009). I meccanismi focali dei sismi relativi al PTF (settore NO), i cui epicentri ricadono all'interno del territorio comunale, rivelano la presenza di una sismicità relativamente più profonda rispetto al sistema di faglie della catena, con profondità degli ipocentri comprese tra 25 e 35 km, con Mw dell'ordine di 3.5 e con carattere di sovrascorrimento puro (direzione di massimo accorciamento variabile tra N e NE).

3.1. Sismicità del territorio comunale

Dal punto di vista sismico, al comune di Prignano sulla Secchia è stata assegnata la classe 3, ovvero a bassa sismicità, in base all'Ordinanza del PCM n. 3274 / 2003, con accelerazione massima attesa (PGA) pari a **0,158g** (Figura 5).

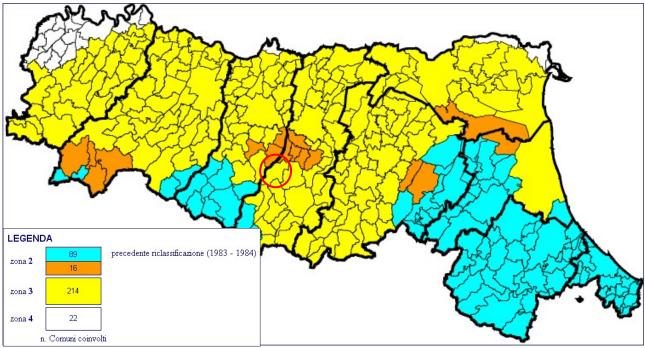


Figura 5 - Classificazione sismica dei comuni dell'Emilia-Romagna. Nel cerchio rosso il Comune di Prignano sulla Secchia.

Se si analizza la sequenza storica degli effetti macrosismici registrati nel territorio comunale dal database delle osservazioni macrosismiche dei terremoti italiani, presenti nel Database Macrosismico Italiano DBMI15 dell'INGV⁴, si nota come importanti effetti si siano registrati anche in relazione ad epicentri lontani dal territorio comunale. Di seguito viene riportata la storia sismica del Capoluogo, limitatamente ai terremoti con intensità epicentrale uguale o superiore a 4–5, così come estratte dal DBMI15 dell'INGV.

Legenda:

I – Intensità al sito (MCS); Io – Intensità epicentrale (MCS); Mw – Magnitudo momento (epicentrale); Ax – Area epicentrale; Np – Numero di punti, numero di osservazioni macrosismiche disponibili per il terremoto.

Effetti					In occasione del terremoto	del:			
I[MCS]	Data				Ax	Np	Io	Mw	
3	1898	03	04	21:05	Valle del Parma	313	7-8	5.41	±0.09
3	1904	11	17	05:02	Pistoiese	204	7	5.15	±0.14
3	1983	11	09	16:29	Parmense	850	6-7	5.06	±0.09
NF	1986	12	06	17:07	BONDENO	604	6	4.61	±0.10
NF	1995	10	10	06:54	LUNIGIANA	341	7	4.85	±0.09
5	1996	10	15	09:56	Correggio	135	7	5.41	±0.09
NF	1997	12	24	17:53	Garfagnana	98	5	4.36	±0.09
3-4	2000	06	18	07:42	Parmense	300	5-6	4.43	±0.09
4	2000	10	03	01:12	Appennino tosco-emiliano	62	5	4.27	±0.09

Figura 6 - Osservazioni macrosismiche per Prignano sulla Secchia (Locati et al., 2016).

Dai dati si evince come le massime intensità macrosismiche registrate (in gradi MCS) corrispondano:

- al terremoto dell'15 ottobre 1996, con area epicentrale a Correggio, intensità epicentrale pari a 7 MCS e magnitudo momento pari a 5.41,
- al terremoto del 18 giugno 2000, con area epicentrale nel Parmense, intensità epicentrale pari a 5-6 MCS e magnitudo momento pari a 4.43,
- al terremoto del 3 ottobre 2000, con area epicentrale nell'Appennino tosco-emiliano, intensità epicentrale 5 MCS e magnitudo momento pari a 4.27.

In generale, le intensità macrosismiche al sito di maggior grado (variabili tra 4 e 5), sul territorio comunale, sono dovute a terremoti con epicentri localizzati a Correggio, nel Parmense e nell'Appennino tosco-emiliano, registrati a partire dalla fine del XIX secolo ad oggi. Intensità al

-

⁴ Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D'Amico S., Conte S., Rocchetti E. (2016). DBMI15, the 2015 version of the Italian Macroseismic Database. Istituto Nazionale di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-DBMI15

sito di grado < 4 sono dovute a terremoti con epicentri localizzati nella Valle del Parma, nel Pistoiese e nel Parmense.

Terremoti con epicentri geograficamente più lontani rispetto al territorio comunale si individuano a Bondeno, in Lunigiana e in Garfagnana.

Occorre precisare che il DBMI15, relativamente a Prignano sulla Secchia, non registra intensità macrosismiche derivate dal terremoto della Garfagnana del 7 settembre 1920. Se, però si visualizzano le intensità macrosismiche registrate al contorno (Figura 7) si può vedere come nelle località di Carpineti (14 km), Massa (10 km), Polinago (10,40 km), Maranello (16,80 km) e Scandiano (17,80 km), in occasione di tale sisma, si sia registrata una intensità macrosismica variabile tra i 7-8 MCS di Carpineti, Massa, Polinago e tra i 5-6 MCS di Maranello e Scandiano. Considerando la non eccessiva distanza (tra i 10 e i 20 km) tra queste località e Prignano sulla Secchia, risulta impensabile che in occasione del sisma del 7 settembre non si siano registrati effetti anche a Prignano sulla Secchia. E', quindi, verosimile che un'intensità compresa tra 5 e 7 MCS sia stata registrata anche a Prignano sulla Secchia.

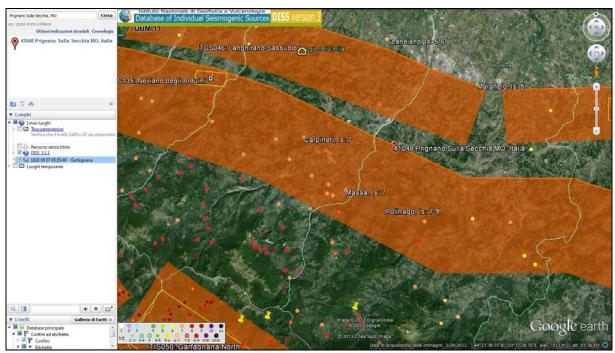
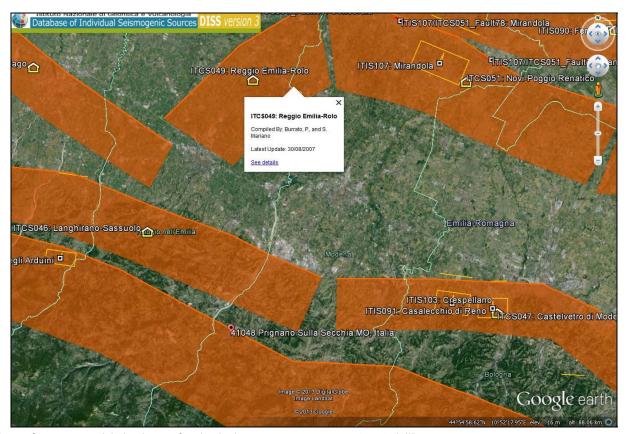


Figura 7 – Estratto dal database of Individual Seismogenic Sources (DISS) dell'INGV e dal DBMI15: i punti colorati si riferiscono alle intensità macrosismiche registrate in occasione del sisma del 7 settembre 1920 con epicentro in Garfagnana (più precisamente all'interno della sorgente sismogenetica composita ITCS083 "Garfagnana"). In basso a sinistra la scala delle intensità MCS).

In ogni caso, trattando, in questa sede, della sismicità dell'intero territorio comunale, l'inserimento di un grado 7 di intensità MCS risulta comunque necessario per completare il quadro della sismicità storica dell'area in esame. In occasione, infine, del recente sisma della Lunigiana del 2013 (Alpi Apuane – Massa, Lucca – MI 5.2 del 2013-06-21 ore 10:33:57 UTC), l'intensità



macrosismica sembra essere stata pari a 3-4 (<u>dato non verificato</u>), ovvero prossima all'intensità macrosismica media, storicamente caratteristica dell'area in studio⁵.

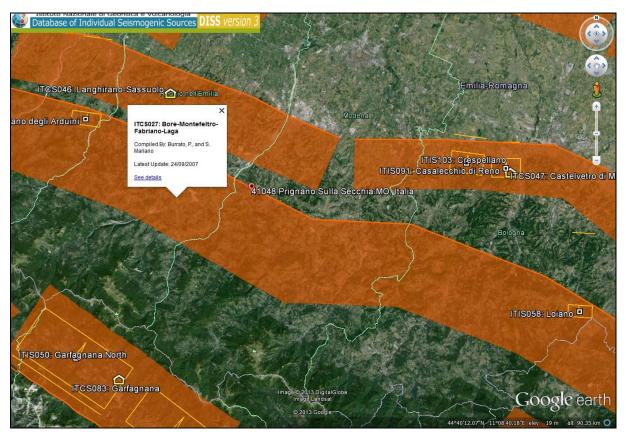
Sovrapponendo gli epicentri dei sismi che hanno dato, storicamente, effetti macrosismici maggiori all'interno del territorio comunale di Prignano sulla Secchia, sulle sorgenti sismogenetiche dell'INGV, è possibile constatare come le maggiori intensità al sito (I) siano state determinate da sismi avvenuti all'interno delle sorgenti composite ITCS049 "Reggio Emilia-Rolo" e ITCS027 "Bore-Montefeltro-Fabriano-Laga", entro cui ricade la parte meridionale del territorio comunale. Intensità minori (3 MCS) sono invece state determinate da sismi avvenuti all'interno della sorgente sismogenetica composita ITCS046 "Langhirano-Sassuolo", entro cui ricade la parte settentrionale del Comune. Un altro settore, non identificato dall'INGV come una vera e propria sorgente sismogenetica, ma che ha comunque contribuito alla storia sismica di Prignano sulla Secchia, è il Pistoiese, da cui si sono generati sismi che hanno dato intensità macrosismiche al sito pari a 3.

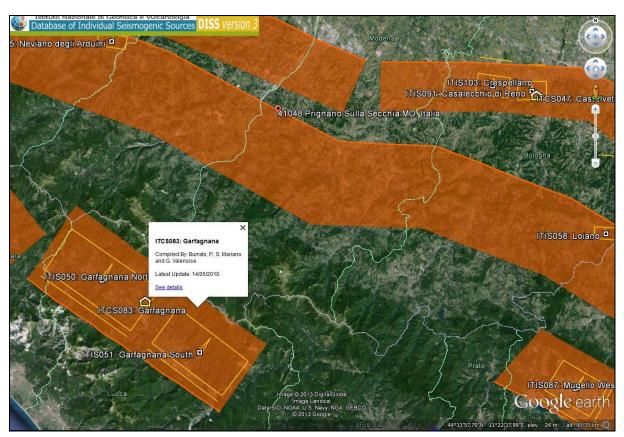
Descrivendo nel dettaglio, quindi, le **sorgenti sismogenetiche**, che in maggior modo possono caratterizzare la sismicità locale, quella che ha determinato intensità macrosismiche locali (I) più alte, pari a 4–5 MCS, è la sorgente sismogenetica composita **ITCS049** "Reggio Emilia–Rolo" (Figura 8), capace di produrre sismi con Mw pari a **5.5** (derivata dal più forte sisma in essa registrato). Sulla base delle osservazioni geologiche, lo *strike* varia da 35° a 65°, il *dip* varia da 30° a 50°, il *rake* è assunto come un sovrascorrimento obliquo (60°–90°) e la *slip rate* varia da 0,1 a 0,5 mm/anno. Le profondità minima e massima sono state individuate rispettivamente a 3 e 10 km.

 $http://terremoti.ingv.it/images/pdf/relazione_di_dettaglio_alpi_apuane_massa_lucca_ml_5.2_del_2013-06-21_10_33_57_utc_versione_del_2013-06-21_ore_14_19_38_utc_l.pdf$

Figura 8 - Estratto dal database of Individual Seismogenic Sources (DISS) dell'INGV: Sorgente Sismogenetica Composita (ITCS) 49 "Reggio Emilia-Rolo".

Come detto in precedenza, nella parte meridionale, il territorio comunale ricade all'interno della sorgente sismogenetica composita ITCS027 "Bore-Montefeltro-Fabriano-Laga", ritenuta capace di produrre sismi con Mw massima pari a 6.2 (derivata dalla massima magnitudo delle sorgenti sismogenetiche individuali in essa comprese) (Figura 9). La geometria di quest'area sismogenetica è determinata dalla geometria delle singole sorgenti individuali in essa contenute: lo *strike* varia da 88° (per la sorgente di Loiano) a 160° (per le sorgenti di Camerino e Sarnano); il *dip* varia da 20° a 54° verso SO; il *rake* è assunto corrispondente ad un sovrascorrimento puro (90°) sulla base di considerazioni geodinamiche generali; la *slip rate* varia da 0,1 ad 1 mm/anno.




Figura 9 - Estratto dal database of Individual Seismogenic Sources (DISS) dell'INGV: Sorgente Sismogenetica Composita (ITCS) 027 "Bore-Montefeltro-Fabriano-Laga".

Circa 30 km a SO del territorio comunale è presente la sorgente sismogenetica composita ITCS083 "Garfagnana", ritenuta capace di produrre sismi con Mw massima pari a 6.4 (derivata dalla massima magnitudo delle sorgenti sismogenetiche individuali in essa comprese – ITIS050 "Garfagnana Nord e ITIS 051 "Garfagnana Sud") (Figura 10). Questa sorgente composita rappresenta una fascia a regime tettonico distensivo che attraversa gli appennini toscani ed emiliani in prossimità della valle del Serchio. La letteratura scientifica la interpreta come possibile estensione verso nord-ovest del Sistema di Faglie Etrusco, immergente verso NE, che rappresenta il limite estensionale nord-occidentale degli appennini settentrionali. I cataloghi sismici storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) identificano, per tale fascia, una sismicità da intermedia (4.5 < Mw 5.0) a distruttiva, al di là dei terremoti distruttivi dell'11 aprile 1837 (Mw 5.6, Alpi Apuane) e del 7 settembre 1920 (Mw 6.5).

Alcuni segmenti di questa sorgente composita sono stati associati ai terremoti più importanti di questo settore appenninico.

Lo *strike* varia da 300° a 310°; il *dip* varia da 30° a 45°; il *rake* (260°–280°) è assunto corrispondente ad un movimento estensionale puro sulla base di osservazioni geologiche; le profondità minima e massima sono state individuate, rispettivamente, a –1 e –10 km; la *slip rate* varia da 0,1 ad 1 mm/anno, dedotta da osservazioni geologiche relative a strutture adiacenti appartenenti al medesimo quadro tettonico della sorgente Garfagnana. Nella sorgente composita "Garfagnana" sono comprese due sorgenti sismogenetiche individuali, la **ITIS050** "Garfagnana Nord" e la **ITIS051**

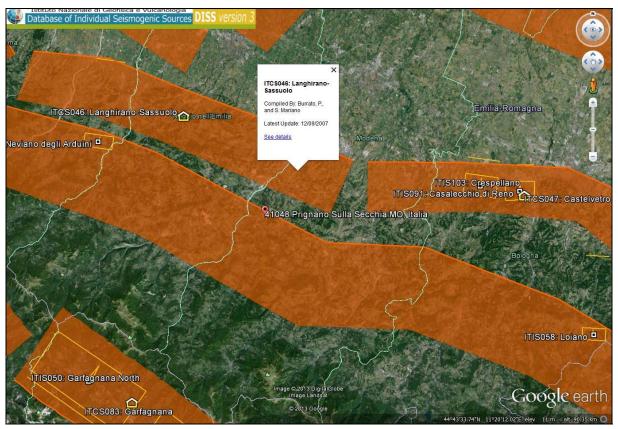

"Garfagnana Sud" (Figura 10), due faglie normali con immersione verso NE le cui attività controllano l'evoluzione recente della valle del Serchio, comunemente denominata "Garfagnana". La "Garfagnana Nord" costituisce la sorgente del terremoto distruttivo del 7 settembre 1920 ed i suoi caratteri geometrici sono stati derivati proprio dalle caratteristiche di tale evento sismico. Alla sorgente "Garfagnana Sud", diversamente dalla prima, non sono associati grandi terremoti storici e le sue caratteristiche geometriche sono state necessariamente dedotte da quelle della ITISO50. La valle del Serchio è poi delimitata, a nord, dal lineamento Sarzana-Equi Terme e, a sud, dal lineamento Viareggio-Val di Lima-Bologna, lineamenti che sembrano delimitare anche il blocco delle Alpi Apuane. La dorsale di Monte Perpoli, vicino a Castelnuovo Garfagnana, rappresenta, a sua volta, la linea di separazione tra le due sorgenti individuali, suddividendo la valle del Serchio in due porzioni pressoché di egual lunghezza. La ITISO50 è ritenuta capace di sismi di Mw massima pari a 6.4; la ITISO51 è ritenuta capace di sismi di Mw massima pari a 6.1.

Figura 10 – Estratto dal database of Individual Seismogenic Sources (DISS) dell'INGV: Sorgente Sismogenetica Composita (ITCS) 083 "Garfagnana" e Sorgenti Sismogenetiche Individuali (ITIS) 050 "Garfagnana Nord" e 051 "Garfagnana Sud".

Una quarta sorgente sismogenetica composita, capace di influire sulla sismicità del territorio comunale di Prignano sulla Secchia è, come detto, la ITCS046 "Langhirano-Sassuolo" (Figura 11), che con i sismi del 1983 e del 2000 ha determinato una intensità macrosismica locale (I) pari a 3 MCS. La sorgente è ritenuta capace di produrre sismi con Mw massima pari a 5.9 (derivata dal più forte sisma in essa registrato). La geometria è determinata principalmente sulla base delle osservazioni geologiche: lo *strike* varia da 95° a 120°; il *dip* varia da 20° a 40°; il *rake* è assunto

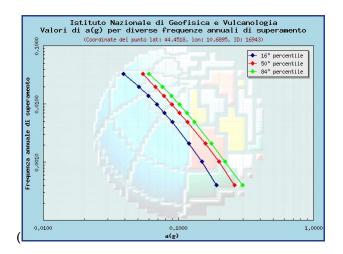
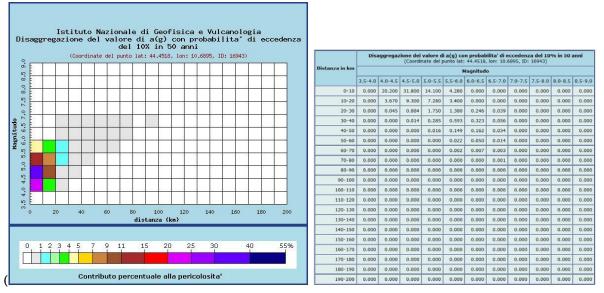
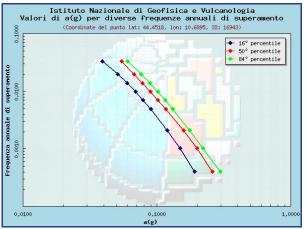

corrispondente ad un sovrascorrimento puro $(80^{\circ}-100^{\circ})$; la *slip rate* varia da 0,1 a 0,5 mm/anno; le profondità minima e massima sono state individuate, rispettivamente, a -2 e -8 km.

Figura 11 – Estratto dal database of Individual Seismogenic Sources (DISS) dell'INGV: Sorgente Sismogenetica Composita (ITCS) 046 "Langhirano-Sassuolo".


Sulla base dell'analisi di pericolosità effettuata dall'INGV⁶, il valore di PGA atteso, con 10% di probabilità di superamento in 50 anni, è pari a 0,158 (pari ad una frequenza di superamento

⁶ http://essel-gis.mi.ingv.it/



annuale	di		0,0021)
Frequenza annuale	(Coordinate del punt	a(g) to lat: 44.4518, lon:	10.6895, ID: 16943)
di superamento	16º percentile	50° percentile	84° percentile
0.0004	0.1911	0.2581	0.2960
0.0010	0.1484	0.1989	0.2210
0.0021	0.1196	0.1584	0.1746
0.0050	0.0900	0.1159	0.1312
0.0071	0.0785	0.1011	0.1149
0.0099	0.0691	0.0893	0.1012
0.0139	0.0595	0.0779	0.0885
0.0200	0.0509	0.0675	0.0759
0.0333	0.0391	0.0545	0.0600

Figura 12). La disaggregazione del valore di ag con la medesima probabilità di eccedenza

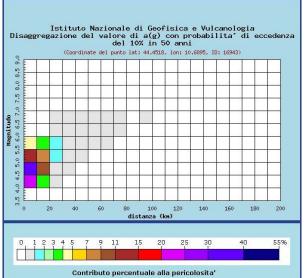


Figura 13) mostra come il contributo percentualmente maggiore (30–40%) alla pericolosità sismica di base del territorio comunale sia determinato da sismi di magnitudo compresa tra 4.5 e 5, con epicentro nei primi 10 km di distanza dal territorio comunale, in grado di produrre PGA pari a 0,32g.

Frequenza annuale	a(g) (Coordinate del punto lat: 44.4518, lon: 10.6895, ID: 16943)						
di superamento	16° percentile	50° percentile	84° percentile				
0.0004	0.1911	0.2581	0.2960				
0.0010	0.1484	0.1989	0.2210				
0.0021	0.1196	0.1584	0.1746				
0.0050	0.0900	0.1159	0.1312				
0.0071	0.0785	0.1011	0.1149				
0.0099	0.0691	0.0893	0.1012				
0.0139	0.0595	0.0779	0.0885				
0.0200	0.0509	0.0675	0.0759				
0.0333	0.0391	0.0545	0.0600				

Figura 12 - Valore di PGA atteso per il territorio comunale di Prignano sulla Secchia con il 10% di probabilità di superamento in 50 anni, calcolato dallo studio di pericolosità sismica dell'INGV.

	Disaggregazione del valore di a(g) con probabilita' di eccedenza del 10% in 50 anni (Coordinate del punto lat: 44.4518, lon: 10.6895, ID: 16943)										
Distanza in km	Magnitudo										
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0-10	0.000	20.200	31.800	14.100	4.280	0.000	0.000	0.000	0.000	0.000	0.000
10-20	0.000	3.670	9.300	7.280	3.400	0.000	0.000	0.000	0.000	0.000	0.000
20-30	0.000	0.045	0.884	1.750	1.380	0.246	0.039	0.000	0.000	0.000	0.000
30-40	0.000	0.000	0.014	0.285	0.593	0.323	0.056	0.000	0.000	0.000	0.000
40-50	0.000	0.000	0.000	0.016	0.149	0.162	0.034	0.000	0.000	0.000	0.00
50-60	0.000	0.000	0.000	0.000	0.022	0.050	0.014	0.000	0.000	0.000	0.00
60-70	0.000	0.000	0.000	0.000	0.002	0.007	0.003	0.000	0.000	0.000	0.00
70-80	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.00
80-90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
90-100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
100-110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
120-130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00

Figura 13 - Disaggregazione del valore di ag con probabilità di eccedenza del 10% in 50 anni per il territorio comunale di Prignano sulla Secchia.

Il contributo del 20–25% alla pericolosità sismica di base del territorio comunale è dato dalla coppia (Mw 4–4.5; epicentro 0–10 km), in grado di produrre PGA pari a 0,2g. Contributi percentuali alla pericolosità del 11–15% sono dati dalla coppia Mw 5–5.5, sempre con epicentro entro i 10 km, in grado di produrre PGA pari a 0,14g. Contributi percentuali minori alla pericolosità (9–11% e 7–9%) sono dati, rispettivamente, dalle coppie (Mw 4.5–5; epicentro 10–20 km) e (Mw 5–5.5; epicentro 10–20 km), in grado di produrre PGA pari a 0,09g e 0,07g.

Il 5-7% di contributo alla pericolosità sismica di base è dato dalla coppia (Mw 5.5-6; epicentro 0-10 km), in grado di produrre PGA pari a 0,04g.

4. ASSETTO GEOLOGICO E GEOMORFOLOGICO DELL'AREA

Per la descrizione degli aspetti geologici e geomorfologici caratteristici del territorio comunale di Prignano sulla Secchia si è scelto di utilizzare la trattazione che di essi viene data nella relazione "Indagine geologico – ambientale", a cura dello Studio Geologico Ambientale "Arkigeo" del Dott. Geol. Giorgio Gasparini, per il Piano Strutturale Comunale dell'Unione di Comuni Montani "Valli Dolo, Dragone e Secchia" (Montefiorino, Palagano e Prignano sulla Secchia); questo al fine di inquadrare il territorio comunale e l'area oggetto delle indagini di dettaglio di MS3 in un più ampio contesto geologico e geomorfologico, funzionale per comprendere gli elementi di criticità locali.

4.1. Inquadramento geologico

Il medio Appennino modenese è caratterizzato (Figura 15) da un substrato roccioso composito, formato da rocce appartenenti a successioni stratigrafiche e unità tettoniche ascrivibili principalmente a due distinti domini paleogeografici (Plesi, 2002):

- Dominio ligure;
- Dominio subligure;

La struttura della catena appenninica settentrionale viene interpretata da diversi ricercatori come un prisma d'accrezione, formato dalla sovrapposizione verticale di grandi unità tettoniche regionali (falde), ciascuna dello spessore di diverse centinaia (fino anche a migliaia) di metri. Ogni grande falda tettonica sarebbe riconducibile a un diverso settore paleogeografico in cui era suddiviso l'originario bacino marino, denominato Tetide, dal quale avrebbe avuto origine la catena appenninica (Treves, 1984) (Figura 16).

Le successioni sedimentarie marine originali sarebbero state segmentate e sovrapposte le une sulle altre in corrispondenza di una zona di subduzione che, secondo le più recenti teorie, sarebbe dapprima stata caratterizzata da un'immersione verso ESE, e impilamento delle falde tettoniche a vergenza alpina (fase ligure o eo-alpina del *Cretaceo superiore-Paleocene*), poi da immersione verso OSO e impilamento delle falde con vergenza e direzione di trasporto verso nord (fasi tettoniche appenniniche) (Figura 17).

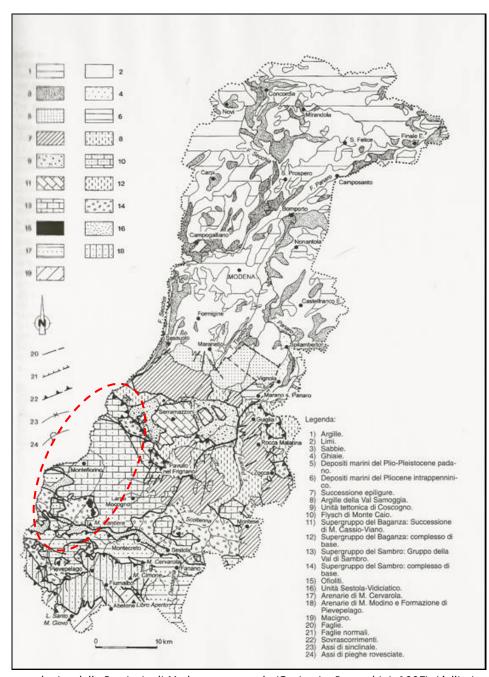


Figura 14 – Carta geologica della Provincia di Modena, estratta da (Capitani e Bertacchini, 1997). L'ellissi a tratteggio rossa individua a grandi linee la collocazione dell'area in studio presa in esame per la relazione "Indagine geologico -ambientale", a cura dello Studio Geologico Ambientale "Arkigeo" del Dott. Geol. Giorgio Gasparini, per il Piano Strutturale Comunale dell'Unione di Comuni Montani "Valli Dolo, Dragone e Secchia" (Montefiorino, Palagano e Prignano sulla Secchia).

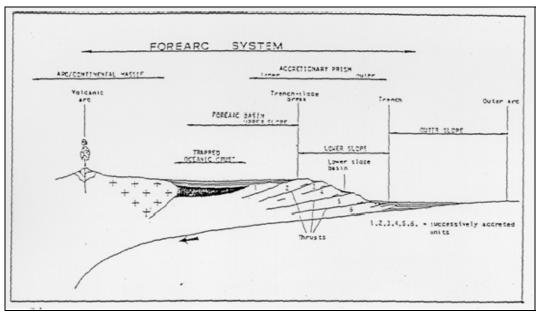
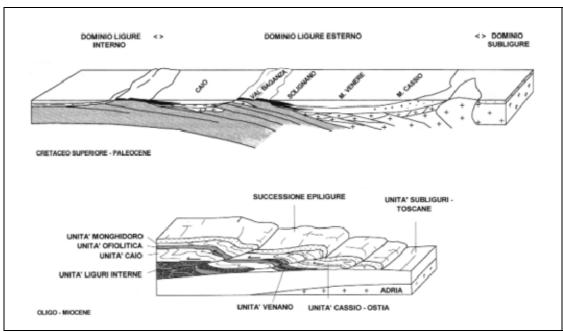



Figura 15 – L'Appennino Settentrionale è una catena a "pieghe e a faglie inverse" inquadrabile nel modello di prisma d'accrezione (da Treves, 1984).

Durante la prima fase tettonica eo-alpina sarebbe avvenuta la subduzione di gran parte dell'originaria crosta oceanica, riferibile a un segmento dell'Oceano Tetide denominato bacino Ligure (o Ligure-Piemontese), con formazione di un prisma d'accrezione costituito da falde liguri, che nelle fasi tettoniche successive sarebbero poi state traslate verso ENE, al di sopra delle unità subliguri, toscane e umbro-marchigiano-romagnole, a formare le cosiddette unità alloctone liguri o Liguridi (Figura 17).

Figura 16 – Ricostruzione paleogeografica del dominio ligure esterno e assetto strutturale generale delle Liguridi Esterne attraverso l'Appennino modenese secondo (Daniele e Plesi, 2000).

Tale strutturazione (Figura 17) alla scala della catena è ancora riconoscibile anche nell'Appennino modenese (Bettelli e Panini, 1992; Bettelli et al., 1989a, 1989b, 1989c; Daniele e Plesi, 2000; Plesi, 2002). A grandi linee, infatti, è possibile ricostruire la struttura dell'edificio appenninico caratterizzata dalla sovrapposizione, dall'alto verso il basso, di:

- Unità liguri o Liguridi;
- Unità subliguri (o subLiguridi);
- Unità Toscane.

La pila delle Liguridi presenta una strutturazione interna complessa, caratterizzata anch'essa dalla sovrapposizione di unità distinte che avrebbero ciascuna un proprio significato paleogeografico (Figura 17).

Le Liguridi, nel settore di Appennino Modenese compreso tra l'alta Val Dolo e la Val Scoltenna, sono distinguibili, in base all'ordine geometrico di sovrapposizione dall'alto verso il basso (Figura 17) (Plesi, 2002), in:

- Unità Monghidoro (Liguridi esterne);
- Unità Venano (Liguridi esterne) (non affiorante in Val Scoltenna e più a est);
- Unità ofiolitica della Val Baganza;
- Unità Caio (Liguridi interne).

Più a nord, compaiono altre unità tettoniche ascrivibili alle Liguridi esterne, ad esempio l'Unità Cassio (Figura 18) tipica delle aree di Serramazzoni (MO) e di Viano (RE) e che affiora limitatamente anche nel territorio di Prignano sulla Secchia.

Nei settori nord dell'area qui esaminata (e in generale nel medio-basso Appennino modenese), le unità Liguridi sono spesso accompagnate dalla così detta Successione epiligure, che rappresenta il prodotto della sedimentazione, avvenuta in ambiente marino (tra l'*Eocene medio-superiore* e il *Tortoniano*), al di sopra delle Liguridi, mentre queste traslavano verso nord sovrapponendosi alle unità subliguri, toscane e umbro-marchigiane (Bettelli et al., 1989a, 1989b) (Figura 17).

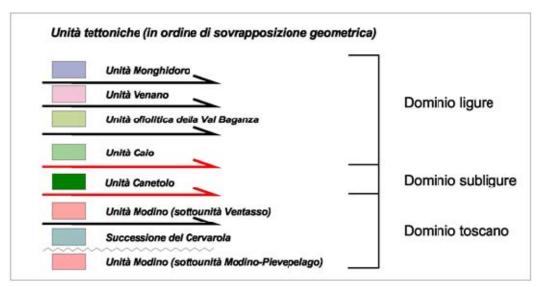


Figura 17 - Schema di sovrapposizione geometrica delle unità strutturali presenti nel medio Appennino Modenese occidentale - disegnato sulla base di (Plesi, 2002).

Gli insiemi di unità tettoniche (toscane, liguri, ecc.) affiorano in generale secondo delle fasce ad andamento NO-SE delimitate a nord e a sud da fasci di strutture tettoniche lateralmente persistenti che assumo i caratteri di importanti lineamenti tettonici di valenza regionale (Figura 19). Nell'area dell'Unione dei Comuni si distinguono un Lineamento Interno (o Linea della Santona⁷), un Lineamento Mediano, il Sistema della Val Rossenna, un sistema di strutture Vicariante della Val Rossenna.

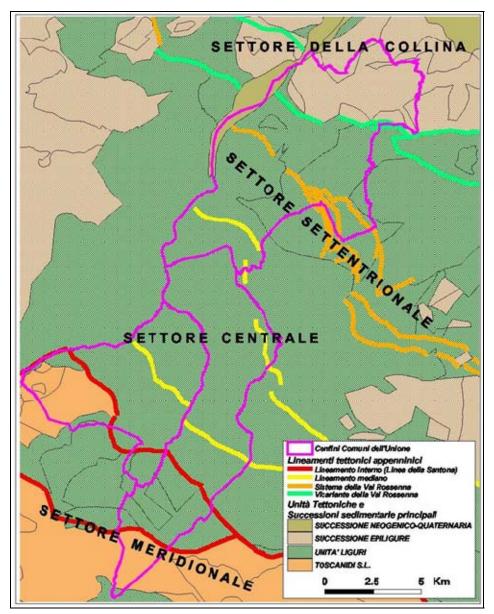


Figura 18 - Schema tettonico del settore centro occidentale dell'Appennino Modenese (fonte: "Indagine geologico - ambientale", a cura dello Studio Geologico Ambientale "Arkigeo" del Dott. Geol. Giorgio Gasparini, per il Piano Strutturale Comunale dell'Unione di Comuni Montani "Valli Dolo, Dragone e Secchia" (Montefiorino, Palagano e Prignano sulla Secchia)

Tali lineamenti tettonici suddividono i territori dell'Unione in tre settori (Figura 19), ciascuno con caratteri litostratigrafici e strutturali che si distinguono in maniera evidente da quelli degli altri

_

^{7 (}Bettelli e Panini, 1992; Bettelli et al., 2002)

settori. Per semplicità descrittiva i tre settori strutturali individuati nei territori dell'Unione sono di seguito informalmente denominati come *Settore meridionale*, *Settore centrale* e *Settore* settentrionale (Figura 19).

4.1.1. Il lineamento Interno e il Settore strutturale meridionale (territorio di Palagano)

Il Lineamento Interno (Bettelli et al., 2002), (Figura 19 e Figura 20) è composto da due strutture (faglie o, meglio, fasci di faglie), a direzione appenninica e a cinematica normale, che verso est confluiscono in un unico sistema, denominato da Bettelli e Panini (1992) come Linea della Santona. In corrispondenza di tale struttura tettonica si determina la giustapposizione delle unità toscane, a sud, con le Liguridi ribassate a nord, tra la Valle del Leo e la Valle dello Scoltenna (Figura 18 e Figura 19), funzione che si esercita anche lungo la diramazione sud, tra Barigazzo e la Val Dolo (a sud del Monte Cantiere), laddove a cavallo della Val Dragone si ha (nei pressi di Cargedolo) la giustapposizione tra l'unità Modino⁸ (sotto-unità Ventasso) e l'Unità Ofiolitica del Val Baganza⁹. Per i settori in esame, occorre considerare anche il significato della diramazione nord della Linea della Santona, che giustappone l'Unità Monghidoro alle unità Liguridi geometricamente sottostanti (Unità Caio, Unità Venano, Unità Ofiolitica della Val Baganza) (Figura 17, Figura 18 e Figura 19). Alla macroscala l'effetto generale di tale strutturazione si risolve nel ribassare i settori posti a nord rispetto quelli posti a sud. Ne consegue che il Settore Meridionale di cui alla Figura 17 è caratterizzato dalla presenza di un substrato roccioso ascrivibile essenzialmente ad unità litostratigrafiche di pertinenza toscana, principalmente Unità Modino-Sottounità Ventasso (nota in letteratura anche come Unità Sestola-Vidiciatico).

4.1.2. Settore Centrale e lineamento Mediano (territori di Palagano e Montefiorino)

Il substrato roccioso del Settore Centrale è ascrivibile quasi completamente a unità litostratigrafiche Liguridi. Solo nella parte occidentale del territorio di Montefiorino, in Val Dolo, affiorano rocce ascrivibili alla sottounità Ventasso (dell'unità Modino) di pertinenza toscana, alle quali, localmente (poco a nord del Monte delle Coste), affiorano rocce¹⁰ di incerta collocazione stratigrafica (e paleogeografica) che a parere di alcuni studiosi evidenziano caratteristiche affini con unità riferibili al dominio Umbro-Marchigiano-Romagnolo (Plesi, 2002).

Nell'area compresa tra le due diramazioni del Lineamento interno affiorano rocce ascrivibili a diverse unità tettonico-stratigrafiche liguri (Plesi, 2002) tra le quali l'unità Monghidoro, l'unità Venano, l'Unità ofiolitica della Val Baganza e l'Unità Caio (Figura 17, Figura 18 e Figura 19).

⁸ L'unità Modino appartiene alle unità toscane, mentre l'Unità Ofiolitica della Val Baganza appartiene alle Liguridi.

⁹ Nella Figura 19 sono utilizzate le denominazioni rispettivamente di Unità Tettonica Sestola-Vidiciatico e Complesso di base I.

¹⁰ Arenarie di Gova nella Carta Geologica regionale.

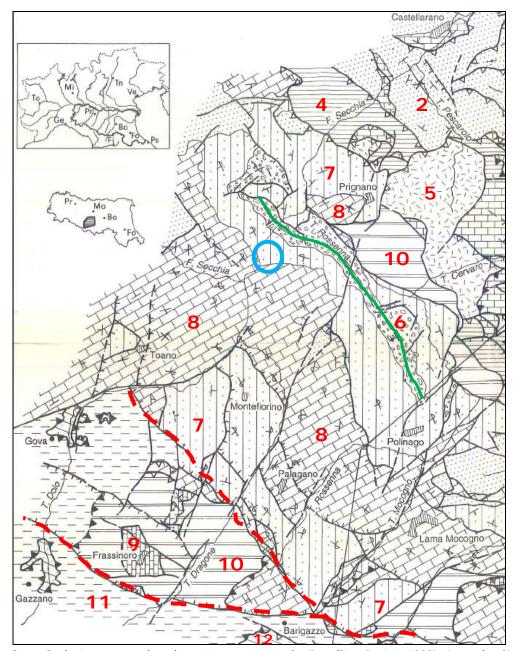


Figura 19 – Carta Geologico-strutturale schematica – estratto da (Bettelli e Panini, 1992). Legenda: 2) Successione Epiligure; 4) Complesso di base II: Argille Varicolori, Arenarie di Scabiazza e Argille a Palombini; 5) Melange di Coscogno; 6) Argille della Val Rossenna; 7) Formazione di Monghidoro; 8) Formazione di Monte Venere, 9) Flysch di Monte Caio, 10) Complesso di base I: Arenarie di P.gio Castellina (Arenarie di Frassinoro), Argilliti di P.gio Mezzature, argilliti variegate, torbiditi arenaceo-pelitiche, Argille a palombini; 11) Unità tettonica Sestola-Vidiciatico (Unità Ventasso); 12) Arenarie di Monte Cervarola. Elementi lineari: linea continua-faglia subverticale o trascorrente; linea con triangoli vuoti-Faglia inversa; linea con triangoli pieni-sovrascorrimento; linea con lineette-faglia normale. La linea rossa tratteggiata individua il Lineamento Interno (o Linea della Santona) che a ovest di Barigazzo si suddivide in due diramazioni. Linea verde continua: asse sinclinale della Val Rossenna. Cerchio azzurro: area di studio della MS3 di Prignano sulla Secchia.

A nord, invece, affiorano quasi esclusivamente rocce ascrivibili all'Unità Monghidoro (Formazioni di Monte Venere e di Monghidoro) coinvolte in una struttura plicativa di importanza regionale nota in letteratura come Sinclinale della Val Rossenna (Bettelli e Panini, 1992) e, più in particolare, nel suo fianco rovesciato.

Sebbene tale struttura plicativa sia ben ricostruibile alla scala sub regionale, essa comunque appare segmentata in settori longitudinali, più o meno relativamente ribassati l'uno rispetto all'altro, in corrispondenza di fasci di faglie (probabilmente normali) indicati nella Figura 18 come Lineamento Mediano, in realtà anch'esso formato da due insiemi di strutture fragili ad alto angolo, circa parallele, che tendono a ribassare i blocchi posti a nord relativamente a quelli posti a sud¹¹.

4.1.3. Settore Settentrionale, sistema della Val Rossenna e Vicariante della Val Rossenna (territorio di Prignano sulla Secchia)

Il Sistema della Val Rossenna e il Vicariante della Val Rossenna sono due insiemi di faglie ad alto angolo, inclinate verso sud, che ribassano i blocchi meridionali rispetto a quelli settentrionali. Il primo dei due insiemi pare essere inquadrabile come un sistema a rigetto normale, mentre la cinematica del secondo è dubbia e non facilmente risolvibile. Potrebbe trattarsi di un insieme di rampe frontali di vecchi sovrascorrimenti.

Il sistema della Val Rossena abbassa l'Unità Monghidoro, coinvolta nella Sinclinale della Val Rossenna, a una quota strutturale inferiore e la porta a giustapporsi alle Liguridi esterne dell'Appennino Modenese, nonché all'insieme strutturale (commistione di lembi formazionali liguridi, subliguridi e *incertae sedis*), noto in letteratura come Melange di Coscogno o Unità Tettonica Coscogno); giustapposizione tettonica che si perfeziona attraverso il sistema strutturale che qui è stato informalmente definito come Vicariante della Val Rossenna. L'unità Monghidoro resta pertanto delimitata, come areale di affioramento, a sud dal Lineamento Interno e, a nord, dal Sistema della Val Rossenna-Vicariante della Val Rossenna. Nel Settore Centrale di Figura 19 è strutturata in maniera che prevalgono gli strati a polarità rovesciata¹² (compresa l'area di studio di Saltino per questa analisi di MS3), mentre nel Settore Settentrionale prevalgono le polarità diritte¹³.

4.1.4. Settore della collina (territorio di Prignano)

È posto a nord del sistema Vicariante della Val Rossenna e, per quanto riguarda il territorio dell'Unione Comunale, è rappresentato esclusivamente dal settore più a nord del territorio di Prignano. Dal punto di vista geologico è caratterizzato dalla presenza di un substrato formato principalmente dal rocce riferibili a unità appartenenti alla Successione Epiligure (Bettelli et al., 1989a, 1989b, 1989c). Si tratta di una successione sedimentaria (Bettelli et al., 1989b) sedimentatasi al di sopra delle unità Liguridi mentre queste venivano traslate verso NE dalle forze orogenetiche 14 tra l'Eocene inferiore – medio e il Tortoniano.

¹¹ In Bettelli e Panini, (1992) tali lineamenti sono denominati Linea Palagano-Case M. Santo Stefano e Linea di San Martino.

¹² Fianco rovesciato della Sinclinale della Val Rossenna.

¹³ Fianco diritto della Sinclinale della Val Rossenna.

¹⁴ La Successione Epiligure è stata anche denominata in passato come Successione semiautoctona o Semialloctona terziaria, proprio per il fatto di essersi sedimentata al di sopra delle Liguridi "in movimento" verso NE, con le quali quindi condivide un certo grado di alloctonia (variabile in base all'età delle formazioni considerate), ma non la provenienza paleogeografica in quanto sarebbe il risultato della deposizione all'interno di bacini "satelliti" o del tipo "*piggy-back*" (De Nardo et al., 1991).

4.1.5. Analisi morfostrutturale e strutture tettoniche trasversali

Attraverso l'analisi della presenza di strutture lineari o planari che si discostano dall'andamento medio dei versanti (resa possibile dal modello digitale delle quote – DEM), sono state identificate le strutture indicate in Figura 20 e in Figura 21. Tali strutture, da un'attenta disamina dei dati geologici di bibliografia, d'archivio o derivanti da rilevamento di campagna, coincidono per gran parte con limiti identificabili sulla base dell'interpretazione geologico-stratigrafica, o hanno comunque un andamento che corrisponde a quello di elementi geologico-strutturali identificati sulla base dei dati geologici (stratigrafici e strutturali).

Figura 20 e Figura 21 mostrano come l'area dell'Unione sia caratterizzata principalmente da lineamenti strutturali ad andamento appenninico (in verde nelle figure), circa NO-SE, e da lineamenti anti-appenninici (con direzione circa N210). I morfolineamenti a direzione appenninica mostrano un andamento grossolanamente curvilineo e appaiono riconducibili a piani ad alto angolo, o comunque molto inclinati; questi spesso coincidono (o comunque sono subparalleli) con le faglie normali e coi sistemi di faglie normali descritti precedentemente (Figura 18 e Figura 19: ad es. Lineamento Interno). In Figura 20 e Figura 21 sono indicati anche numerosi lineamenti ad assetto antiappenninico che formano un fascio di tracce sub-parallele, rettilinee (riferibili quindi a piani pressoché subverticali). Il fascio di strutture è riconoscibile per una larghezza di circa 12 Km (in senso NO-SE) e per una lunghezza di circa 25 Km in direzione trasversale alla catena (N210). Le evidenze morfologiche dell'esistenza di tale fascio di deformazioni fragili trasversali sono numerose:

- i corsi dei Torrenti Dragone, Rossenna (parte alta), Mocogno e di un tratto del Torrente Scoltenna, sono pressoché subparalleli (direzione circa N210); il lineamento lungo il T. Mocogno, oltre tutto, si pone come diretta prosecuzione di quello dello Scoltenna, mentre il lineamento che passa poco a est di Monchio si pone in prosecuzione di quello che si colloca a cavallo del corso del Dragone;
- lungo il T. Dragone e il T. Mocogno, principalmente in sinistra idrografica, si riconosce la presenza di forme, cosiddette "faccette triangolari" (*flatiron*), la cui interpretazione è generalmente ricondotta alla presenza di piani di faglia, che tagliano un versante determinando una discontinuità morfologica che, nella carta dell'esposizione (Figura 21) appare piuttosto evidente. Il dato è interessante, soprattutto per la Val Dragone, dove le faccette triangolari sembrano delineare un'unica struttura planare (una superficie a trend N210, ad alto angolo inclinata verso SE) lungo la quale si sarebbe impostata la valle medesima. Il dato è reso ancor più significativo dal fatto che le strutture sono individuabili sia nel tratto di valle a nord del ramo settentrionale della Linea della Santona (Figura 19), dove sono presenti rocce appartenenti all'unità Monghidoro, sia nel tratto a sud di tale lineamento tettonico dove affiorano invece le ofioliti e le argille a Palombini riferibili all'Unità Ofiolitica della Val Baganza;
- lungo il versante destro della Val Dragone si individuano lineamenti sub-paralleli (direzione N210) evidenziati da variazioni brusche dell'acclività, contropendenze, superfici sub-pianeggianti e deviazioni nell'andamento di linee di dorsale e crinali secondari. Detti lineamenti sono solo parzialmente mascherati dalla presenza di estesi corpi di frana. Non è escluso che la geometria e la diffusione degli stessi movimenti franosi possa essere stata

controllata anche dall'assetto strutturale e, soprattutto, da contatti tettonici lungo faglie a direzione anti-appenninica (coincidenti con i lineamenti morfostrutturali);

 nel corso di sopralluoghi con rilevamento di campagna sono state osservate (su rocce ofiolitiche sia in destra che in sinistra del T. Dragone) diverse superfici di faglie mesoscopiche, anche di grandi dimensioni, subparallele al trend antiappenninico dei lineamenti morfostrutturali principali o comunque con assetti geometrici inquadrabili in uno schema riconducibile ad una fascia di deformazioni di taglio destro caratterizzata da un'orientazione all'incirca N210.

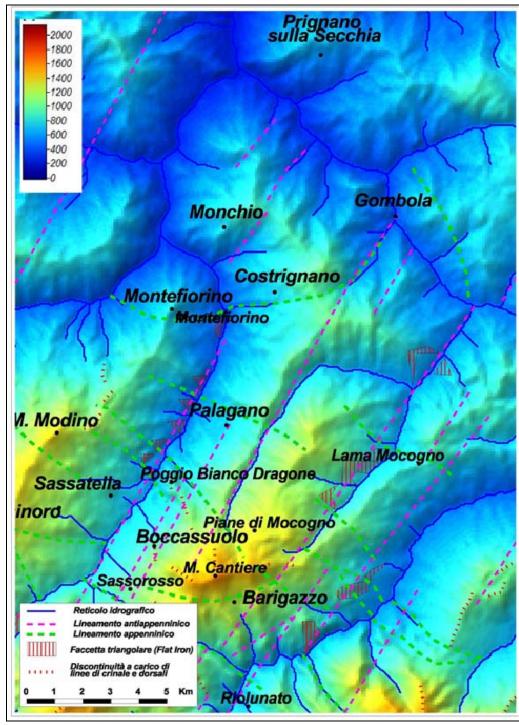


Figura 20 – Rappresentazione della topografia dell'area compresa tra la Val Dragone e la Valle dello Scoltenna tramite modello digitale del terreno (fonte dati: DEM SRTM, sito web NASA). Da: "Indagine geologico – ambientale", a cura dello Studio Geologico Ambientale "Arkigeo" del Dott. Geol. Giorgio Gasparini, per il Piano Strutturale Comunale dell'Unione di Comuni Montani "Valli Dolo, Dragone e Secchia" (Montefiorino, Palagano e Prignano sulla Secchia).

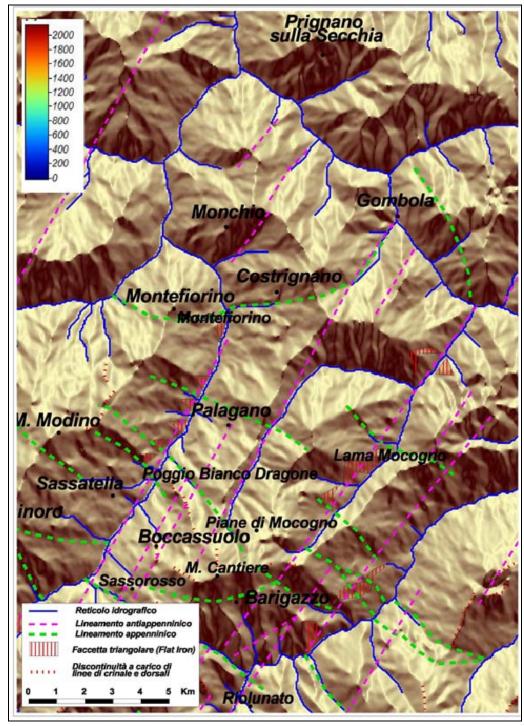


Figura 21 – Aspect map (carta dell'esposizione) elaborata a partire dal DEM di cui alla figura precedente. La carta descrive l'orientazione, rispetto al nord, di ciascuna cella che forma il DEM. Tale elaborazione permette di accentuare maggiormente il risalto di certe forme topografiche (crinali, fondivalle, scarpate, superfici relitte, faccette triangolari (flat iron), ecc.), evidenziando l'esistenza di strutture e forme. Da: "Indagine geologico – ambientale", a cura dello Studio Geologico Ambientale "Arkigeo" del Dott. Geol. Giorgio Gasparini, per il Piano Strutturale Comunale dell'Unione di Comuni Montani "Valli Dolo, Dragone e Secchia" (Montefiorino, Palagano e Prignano sulla Secchia).

4.2. Geologia dell'area oggetto di analisi di MS3

L'area di studio è cartografata nel Foglio 218 "Castelnovo ne' Monti" della Carta Geologica d'Italia a scala 1:50.000 (Figura 22). E' caratterizzata dalla presenza ubiquitaria di affioramenti della Formazione di Monghidoro (MOH), a loro volta in gran parte coinvolti da movimenti franosi senza indizi di evoluzione e in evoluzione.

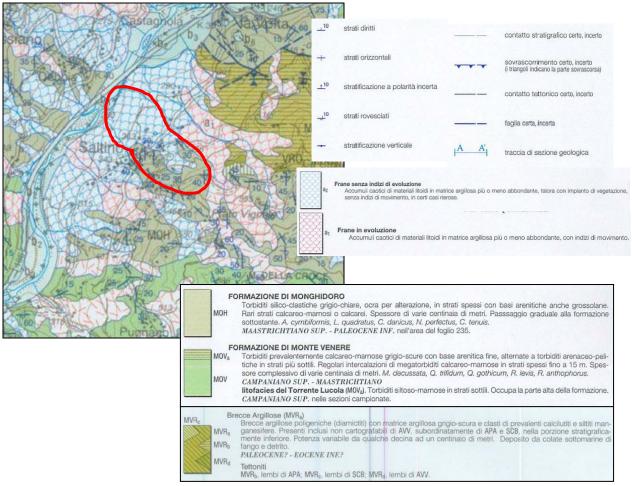


Figura 22 – Stralcio del Foglio 218 "Castelnovo ne' Monti" della Carta Geologica d'Italia a scala 1:50.000. Il perimetro rosso tratteggiato circoscrive l'area di studio.

Gli strati di MOH hanno polarità rovesciata, con direzione d'immersione generalmente verso SO ed inclinazione variabile tra 25° e 40°. Gli affioramenti costituiscono il nucleo del centro abitato storico di Saltino, che si estende lungo il tratto altimetricamente più basso di una dorsale rocciosa che va da località Prato Vignale a Saltino stesso. Ad est del nucleo storico di Saltino gli stati di MOH sono stati interessati da un esteso fenomeno franoso (in carta cartografato come "senza indizi di evoluzione"), di cui gli archivi ne documentano l'attivazione (la prima riconosciuta in tempi storici) all'anno 1790. In tale occasione, il fenomeno franoso avrebbe avuto origine in corrispondenza dell'attuale scarpata a monte del campo sportivo, raggiungendo l'alveo del Fiume Secchia.

Subito ad est dell'ampio fenomeno franoso quiescente, oggetto di studio per questa MS3, frane in evoluzione di ampia estensione lineare coinvolgono sia i terreni di MOH, sia le Brecce Argillose

(MVR), quest'ultime particolarmente soggette a fenomeni franosi quali colate e scivolamenti per l'alta percentuale di matrice argillosa presente.

Anche i versanti ad ovest del nucleo abitato di Saltino sono stati interessati da diffusi fenomeni franosi, attivi principalmente nel secolo scorso, fino a fine anni '70.

4.3. Inquadramento geomorfologico

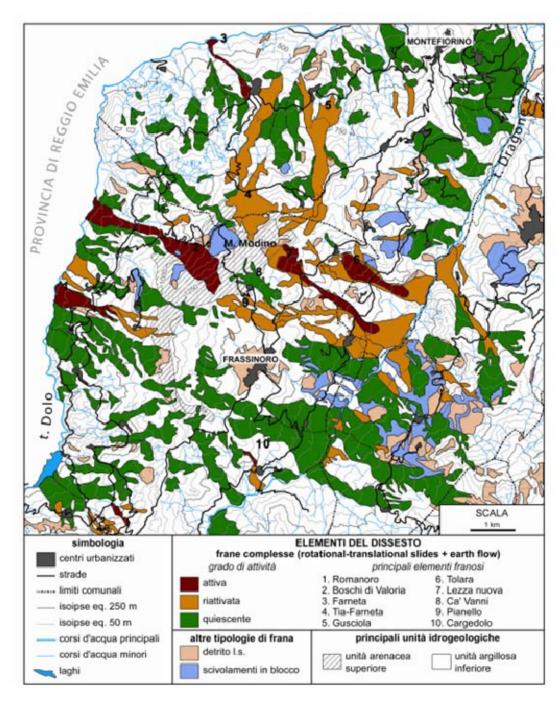
Da un'osservazione anche sommaria degli elementi che caratterizzano il paesaggio dei territori dell'Unione, è evidente che, al di là dei condizionamenti strutturali di cui si è parlato nei capitoli precedenti, l'azione della forza di gravità e delle acque incanalate sono gli agenti che in maggiore misura contribuiscono alla morfogenesi recente ed attuale.

4.3.1. Frane

Pressoché tutti i versanti dei corsi d'acqua principali (Secchia, Dolo, Dragone e Rossenna) sono interessati dalla presenza di corpi franosi che, in vari casi, si allungano per tutto o quasi tutto lo sviluppo del versante medesimo (secondo la direzione di massima pendenza).

Secondo quanto riportato in (Garberi et al., 1999), il territorio di Montefiorino è interessato da corpi franosi per una percentuale compresa tra il 40 e il 50 per cento, mentre i territori di Prignano e Palagano sarebbero interessati da frane per una percentuale compresa tra il 20 e il 30 per cento dell'intero territorio comunale. Sempre secondo quanto riportato nella pubblicazione citata, i chilometri totali di infrastrutture viarie interessate da frane attive o che insistono su frane quiescenti sarebbero rispettivamente: oltre 32 nel territorio di Montefiorino (pari a circa il 47% del totale), oltre 26 nel Comune di Palagano (pari a poco più del 38% del totale) e oltre 30 nel Comune di Prignano (pari a oltre il 27% del totale).

In linea generale, le tipologie di frana più frequenti, per quanto riguarda la dinamica di movimento, sono: traslativa, roto-traslativa, colata o, più spesso, complessa. La genesi è favorita dall'alta energia del rilievo (elevato dislivello tra crinale e fondo valle), dall'assetto strutturale (strati a franapoggio, oppure strutturazione del rilievo caratterizzata da presenza di rocce a componente prevalentemente lapidea nelle parti elevate del versante e rocce a componente prevalentemente argillitica nelle parti medio basse del medesimo) e da abbondanti precipitazioni totali annue, che possono, in talune annualità, ripartirsi in piogge concentrate in certi periodi dell'anno, tanto che molti eventi franosi sembrerebbero essersi attivati in coincidenza di eventi pluviometrici particolarmente intensi e/o prolungati (si veda, a proposito, il recente articolo presente sul numero 47 della rivista "Il Geologo dell'Emilia-Romagna", a cura di Tellini, 2013).


La propensione alla franosità dei territori in esame è testimoniata sia dalla documentazione storica (ad. es. Brunamonte, 2003) sia dai numerosi studi e segnalazioni che hanno interessato e interessano tutt'ora gli areali dell'Unione.

Il sistema delle frane che scendono dal Monte Modino (Figura 23) ne è un chiaro esempio, sia in riferimento ai danni che i versanti interessati (sia in destra Dolo che in sinistra Dragone) hanno subito storicamente, ma anche recentemente, sia per gli sforzi materiali ed economici che sono stati impegnati per lo studio di tali fenomeni franosi e per la risistemazione di manufatti e

infrastrutture viarie che, a più riprese, anche nel recente passato, sono stati danneggiati dai movimenti di versante (Leuratti et al., 2007). Da evidenziare come si tratti, spesso, di frane la cui origine è molto antica (diverse migliaia di anni secondo alcune datazioni radiometriche) (Leuratti et al., 2007) e che hanno contribuito a modificare le forme e la percezione del paesaggio locale sia lungo i versanti che nei fondivalle.

Evidenze morfologiche, ma anche testimonianze recenti, indicherebbero, ad esempio, che le frane della "Lezza Nuova" e di "Tolara" (Figura 23) avrebbero ostruito a più riprese il corso del Torrente Dragone, dando luogo alla formazione di laghi di sbarramento effimeri (Soldati e Tosatti, 1993). L'area di Monte Modino non è comunque l'unica sede di movimenti gravitativi di versante importanti ad avere destato l'interesse di studiosi e degli organi tecnici preposti al monitoraggio e alla sicurezza del territorio.

Numerose sono le forme gravitative di versante che, nel tempo, sono state oggetto di studio, di interventi di messa in sicurezza o di ripristino, o comunque soggette a monitoraggio periodico; tra queste, oltre al citato sistema delle frane del Monte Modino (Comuni di Montefiorino, Palagano e Frassinoro), si ricordano la frana di Saltino-La Volta (Comune di Prignano, fianco destro della valle del F. Secchia), le frane di Castelvecchio-Case Olivieri (Comune di Prignano, fianco destro della valle del F. Secchia), le frane di Boccassuolo e dell'area del Cinghio del Corvo (Comune di Palagano, fianco destro della Valle del Torrente Dragone); la frana sul versante orientale di Montefiorino (Comune di Montefiorino, fianco sinistro della Valle del Torrente Dragone); la frana di Ponte Dolo (Comune di Montefiorino, fianco destro della Valle del Torrente Dolo) ecc.

Figura 23 – Carta geomorfologica della dorsale compresa tra Frassinoro e Montefiorino (Valli dei Torrenti Dolo e Dragone). Sono individuate, con un numero di riferimento, le frane che scendono dal Monte Modino (estratto da Leuratti et al., 2007).

4.3.2. Altri depositi di versante di varia genesi

La carta idro-geomorfologica del PSC dell'Unione riporta, mutuandoli dalla carta geologica regionale, gli accumuli detritici di versante ascrivibili a processi diversi dalle frane (Figura 25). Si tratta di depositi eolici (o interpretati come tali), palustri o da riempimento di laghetti, eluviali, colluviali e, ovviamente, di genesi mista. Data la loro estrema eterogeneità genetica e

composizionale, non è possibile, in questa sede, descriverne in modo specifico le caratteristiche litotecniche (resistenza, compattezza, grado di alterazione ecc.) ed individuarne precisi spessori. Questi ultimi sono identificabili solo in pochissimi casi puntuali, in corrispondenza di sondaggi geognostici. La loro presenza può comunque giocare un ruolo importante nell'amplificazione stratigrafica dell'input sismico.

Come si può vedere in Figura 25, i depositi di versante di genesi mista sono distribuiti in modo tutto sommato omogeneo all'interno del territorio comunale, con densità leggermente maggiore in corrispondenza del nucleo abitato di Prignano sulla Secchia; la genesi è "genericamente" definita come "di versante", ma considerata la loro prossimità a corpi di frana cartografati, potrebbero anche essere identificati come depositi di frana stabilizzati o relitti.

4.3.3. Morfologie legate all'azione delle acque di ruscellamento superficiale

RETICOLO IDROGRAFICO

Nei territori dell'Unione Comunale, oltre alla forza di gravità, il principale agente morfologico del paesaggio è rappresentato dalle acque di ruscellamento superficiale che danno forma al reticolo idrografico il quale ha nei Torrenti Dolo, Dragone, Rossenna e Fiume Secchia gli assi principali; il suo andamento generale, come detto precedentemente, è spesso influenzato dall'assetto strutturale e dal substrato litologico.

Le principali aste fluviali presentano un andamento sostanzialmente parallelo tra di loro (Figura 24), per lo meno nei settori Meridionale e Centrale di Figura 18 e, per il Secchia, anche nei settori settentrionali e della collina. Tale andamento rispecchia sostanzialmente quello delle faglie trasversali di cui si è parlato diffusamente in precedenza (Figura 20 e Figura 21). In realtà, il torrente Dolo conserva tale andamento più a sud, nel Comune di Frassinoro, mentre tende a deviare verso est nel territorio di Montefiorino, fino quasi alla confluenza col Dragone. Tale andamento è ancora fortemente controllato dalle macrostrutture geologiche. In tale settore, la presenza di una faglia posta in coincidenza proprio del torrente determina il forte abbassamento relativo del blocco settentrionale (in Provincia di Reggio Emilia) con giustapposizione delle unità liguri (Unità Tettonica Monghidoro), a nord, alle unità toscane della Finestra tettonica di Gova. L'entità del rigetto verticale supererebbe i 3000 m sulla base dei dati derivanti da una perforazione profonda nei pressi di Quara, sul versante reggiano della Val Dolo (Anelli et al., 1994) e il risultato di tale strutturazione alla macroscala avrebbe come conseguenza anche la deviazione indotta dalla presenza di rocce meno erodibili (formazioni di Monghiodoro e Monte Venere) che farebbero da ostacolo alla progressione fluviale e avrebbero deviato il corso fluviale dal generale andamento SO-NE, riscontrato, invece, in tutte le aste fluviali principali. Sempre a cause strutturali e legate alla natura del substrato sarebbe dovuto anche l'andamento del segmento più a valle del Torrente Rossena (tra il comune di Polinago e quello di Prignano), laddove l'affiorare del nucleo della sinclinale della Val Rossenna porta a giorno le rocce più erodibili (a natura prevalentemente argillitica) del Complesso del Rio Cargnone e, in generale, della Successione della Val Rossenna (parte alta della Successione che ha dato origine all'Unità Tettonica Monghidoro).

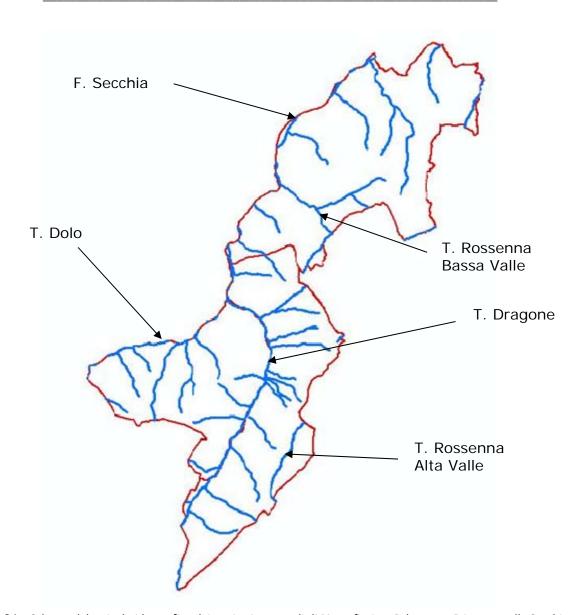
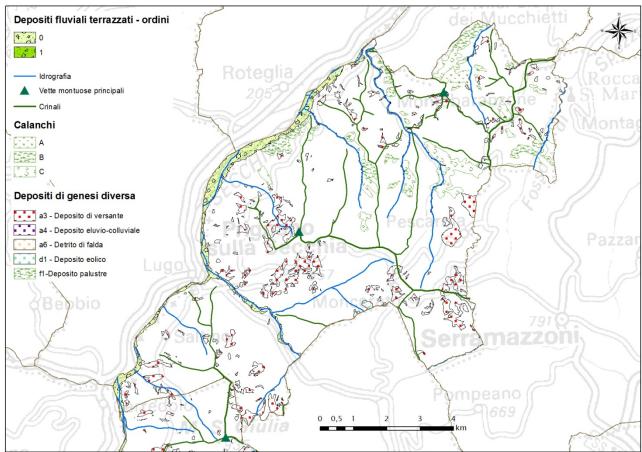


Figura 24 – Schema del reticolo idrografico dei territori comunali di Montefiorino, Palagano e Prignano sulla Secchia.

DEPOSITI FLUVIALI DI FONDOVALLE E TERRAZZATI


Nella carta idro-geomorfologica del PSC dell'Unione (a cui si rimanda per completo riferimento), sono indicati i depositi fluviali, distinti secondo l'ordine di terrazzamento locale. Seguendo i contenuti della carta geologica regionale, i depositi fluviali sono stati distinti in sei ordini di terrazzi morfologici partendo dai depositi di alveo attuali (identificati come terrazzi numero 0 e numero 1) fino ai resti di depositi fluviali terrazzati a quote anche di diverse decine di metri rispetto all'alveo attuale (terrazzi di ordine 3, 4 e 5).

I terrazzi di ordine superiore sono interpretabili come i resti dell'alveo di epoche antiche (anche pre-Olocene) che, per effetto del sollevamento generalizzato della catena appenninica, sono stati erosi e in generale in minima parte preservati come forme di terrazzo morfologico. Tra questi si distinguono, per la notevole ampiezza e continuità, i terrazzi morfologici presenti nel territorio di Prignano (loc. Le Piane e Casa Azzani), in destra Secchia. Si tratta di estese superfici pianeggianti

che si sviluppano parallelamente al corso fluviale complessivamente per circa 2 chilometri, con una larghezza che raggiunge anche i 200 m e sono delimitate verso il fiume da una scarpata subverticale di oltre 40 m di altezza. La presenza in alveo di rocce scarsamente erodibili (Formazione di Pantano) ha fatto sì che il fiume abbia scavato una gola stretta (nota come Stretta del Pescale) lasciando in alto i resti di un'antica piana valliva, ben preservata, caratterizzata dalla presenza in superficie di alcuni metri di depositi fluviali antichi che, al bordo del versante, sono localmente ricoperti da materiali di natura eluvio-colluviale o gravitativa.

Oltre ai depositi fluviali terrazzati, nella Carta Idro-geomorfologica del redigendo PSC sono individuati anche i conoidi alluvionali, solitamente localizzati in corrispondenza della confluenza tra due corsi d'acqua.

Come si vede da Figura 25, i depositi alluvionali terrazzati sono ovviamente limitati agli alvei attuali dei corsi d'acqua principali, ovvero del Fiume Secchia e, con estensioni relativamente maggiori, in prossimità della confluenza tra i torrenti Dolo e Dragone, ove sono presenti anche terrazzi di ordine 1.

Figura 25 – Distribuzione dei depositi alluvionali terrazzati (solo ordini minori), dei depositi di genesi diversa e dei calanchi nel territorio comunale di Prignano sulla Secchia. Tematismi vettoriali estratti dalla Carta Idro-geomorfologica del PSC dell'Unione dei Comuni delle Valli Dolo-Dragone-Secchia.

CALANCHI

I calanchi sono forme erosive derivanti dall'azione del ruscellamento concentrato delle acque meteoriche. Si formano su terreni a comportamento geomeccanico plastico, generalmente

sovraconsolidati. Nelle fasi genetiche iniziali si origina una vallecola principale, dalla quale si diramano poi altre vallecole di ordini via, via inferiori. Il processo procede generalmente per arretramento delle testate delle varie vallecole e conseguente riduzione dello spazio tra una vallecola e l'altra; si formano, in tal modo, dorsali ripide e strette ("a lama di coltello"). La genesi delle forme calanchive è favorita dall'assetto a reggipoggio della stratificazione, che permette la formazione di versanti ripidi nei quali prevalgono i fenomeni erosivi rispetto a quelli franosi (i quali sono generalmente favoriti da pendenze più dolci e concavità pronunciate della superficie topografica). Le forme calanchive mature presentano una struttura ad anfiteatro, tuttavia fattori strutturali e litologici possono condizionarne l'aspetto. Spesso si possono avere forme miste, in cui ai fenomeni erosivi *strictu sensu* si associano fenomeni franosi: laddove questi ultimi prevalgono, le forme risultanti vengono dette pseudo-calanchive.

Considerate le caratteristiche geologico-strutturali precedentemente descritte, ne deriva che le forme calanchive si concentrano prevalentemente nella parte nord del territorio di Prignano. Alcune forme sono presenti nel territorio di Montefiorino, nella zona a ovest, mentre in Palagano sono quasi completamente assenti.

Nella carta idro-geomorfologica del PSC sono state riportate le forme calanchive riprese dal PTCP, in quanto non è stata ravvisata l'esistenza di ulteriori simili morfosculture cartografabili. Dallo stesso PTCP è stata anche mantenuta la classificazione in calanchi peculiari (A), Calanchi tipici (B) e Aree (o zone) sub-calanchive (C).

4.4. Geomorfologia dell'area oggetto di analisi di MS3

Dal punto di vista geomorfologico, l'area di studio ricade all'interno di un ampio versante che, dal crinale del Monte della Croce, a SE, scende verso NO fino all'alveo del Fiume Secchia (Figura 26). La caratteristica geomorfologica maggiormente evidente è l'ampia estensione assunta dai corpi franosi, sia in evoluzione che senza indizi di evoluzione, i quali lasciano spazio ad affioramenti di MOH di estensione limitata e spesso isolati tra loro dai corpi di frana stessi.

Confrontando la carta geologica a scala 1:10.000 della Regione Emilia-Romagna (Figura 26) con la carta del dissesto del PTCP (Figura 27), la configurazione dei fenomeni franosi è del tutto simile, con l'esplicitazione, nella geologica regionale, della presenza di roccia in posto (Formazione di Monghidoro – MOH in carta) e di detrito di versante (a3 in carta) in corrispondenza della dorsale che fa da spartiacque tra due settori in frana distinti, ma coalescenti a valle. Detrito che ricopre il ripiano su cui si trova il campo sportivo ed il versante ove è presente il cimitero, entrambi a valle della scarpata di frana riconducibile all'attivazione del 1790.

Procedendo verso valle, fino all'alveo del Secchia, entrambi gli elaborati cartografici uniscono, all'interno di un vasto settore codificato come in frana quiescente/a2g, vari corpi di frana coalescenti, rendendo di difficile comprensione l'evoluzione degli stessi lungo l'intero versante.

A luoghi, corpi di frana attivi, nel settore di monte, proseguono verso valle come quiescenti; in altri casi, come per la frana oggetto del presente studio, il piede assume un'inverosimile estensione laterale, andando a compiere una deviazione di 90° verso ovest a valle della cresta rocciosa su cui sorge la chiesa parrocchiale.

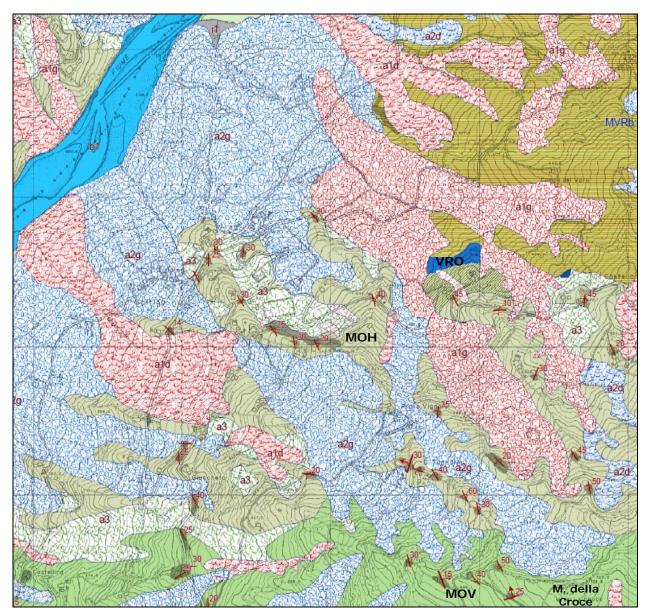


Figura 26 - Stralcio della Sezione 218160 "San Cassiano" della carta Geologica a scala 1:10.000 dell'Appennino emiliano-romagnolo della Regione Emilia-Romagna - Servizio Geologico, Sismico e dei Suoli (Rilevamento geologico originale eseguito alla scala 1:10.000, negli anni 1982\1996. Aggiornamento delle unità geologiche al 2005 e parziale aggiornamento delle coperture al 2011). Legenda - MOV: Formazione di Montevenere; MOH: Formazione di Monghidoro; VRO: Argille della Val Rossenna; MVR_b: Complesso di Rio Cargnone - inclusi di alternanze argilloso-calcaree; a2g: deposito di frana quiescente complessa; a2d: deposito di frana quiescente per colamento di fango; a1g: deposito di frana attiva complessa; a1d: deposito di frana attiva per colamento di fango; a3: deposito di versante s.l.

Una definizione geomorfologicamente più verosimile della frana in esame è quella contenuta nella Carta inventario delle frane dell'Emilia-Romagna (Figura 28): qui la frana è identificata con il codice 202153 a cui fa riferimento l'apposita scheda descrittiva delle riattivazioni conosciute¹⁵. Tutte le riattivazioni più recenti sono cartografate in rosso e sono pertinenti alla sola scarpata principale da cui ha avuto origine l'evento del 1790.

¹⁵ http://geo.regione.emilia-romagna.it/schede/fs/fs_dis.jsp?id=202153

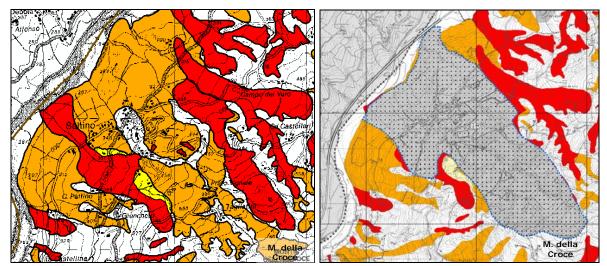


Figura 27 - Stralcio della Tavola 2.1.8 "Rischio da frana: carta del dissesto" del PTCP della Provincia di Modena. In arancione: aree interessate da frane quiescenti; in rosso: aree interessate da frane attive; in giallo: aree potenzialmente instabili; in grigio: area a rischio idrogeologico molto elevato; poligono con perimetro a pallini azzurri e pallini neri interni: abitato da consolidare o trasferire (perimetrazione ai sensi dell'art. 29 comma 2 del PTPR) - scheda nr. 14. A sinistra: elaborazione cartografica a cura dello scrivente utilizzando il layer digitale (SHP file) del dissesto provinciale; a destra: stralcio dell'originale PTCP.

La zona di transito coinvolge il cimitero, alcuni edifici privati e la strada, seguendo un percorso più verosimile, dal punto di vista geomorfologico, rispetto a quello descritto nelle cartografie geologica regionale e del dissesto provinciale e che si avvicina a quello descritto nella relazione geologica a cura del Dott. Geol. Luigi Savio (1989) per il consolidamento dell'abitato di Saltino (perimetrazione legge N 445) (Figura 29).

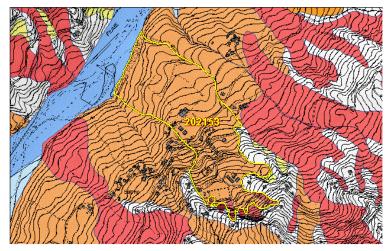


Figura 28 - Cartografia dell'inventario delle frane della Regione Emilia-Romagna (edizione marzo 2017).

Rispetto alla cartografia di L. Savio, in questa sede si predilige, dal punto di vista prettamente geomorfologico, l'interpretazione data dall'inventario del dissesto regionale (Figura 28), in cui il piede trova il suo limite nord-orientale in corrispondenza della linea tratteggiata gialla di Figura 29.

Figura 29 – Stralcio Allegato 3 della relazione geologica "Consolidamento abitato di Saltino – perimetrazione legge N 445 – frane databili", a scala 1:5000, a cura del Dott. Geol. Luigi savio (1989). La linea gialla tratteggiata delimita il bordo nordorientale della frana del 1790 in base all'interpretazione dello scrivente.

Per la frana attivatasi nel 1790, oggetto del presente studio di MS3, l'inventario del dissesto regionale, riprendendo il lavoro di Brunamonte (2003), cita: *Settore di versante compreso tra Il Borgo, Prato di Vignale, Cà di Viano e l'alveo del F. Secchia. La mobilizzazione in massa di una*

grande frana coinvolge l'intero tratto di versante a valle dell'attuale nucleo di Prato Vignale e comportando la distruzione dell'antico borgo di Povello. Il nucleo abitato di Povello era situato a sud del coevo edificio del Caseificio (ora adibito a deposito di R. Bardelli) posto lungo il tracciato della Via Ducale (CASTELLARI, 2002). La zona di distacco, ancora ben evidente, si localizza in corrispondenza della netta scarpata ad andamento arcuato sovrastante il campo sportivo della Parrocchia di Saltino. Il movimento coinvolse l'area sottostante sino alla sponda del F. Secchia dove sorgeva l'antico borgo. Il margine sinistro del corpo di frana lambì lo spigolo nord-est della Chiesa che non fu travolta. Ampio corpo di frana quiescente esteso sino alla base del versante destro del F. Secchia. Alterazione dell'assetto morfologico del versante, con formazione di zone depresse e in contropendenza sede di ristagni idrici alimentati dallo scorrimento superficiale e dall'emergenza della circolazione idrica epidermica.

Dimensioni del fenomeno: L = 1150 m circa, l max = 500 m, l min = 370 m, l (accumulo) = 750 m, p (sulla base delle indagini sismiche svolte nel 1979 per la ricostruzione del cimitero) = 19 m $nel \text{ settore meridionale in prossimità del nucleo principale del Borgo, } A = 0.50 \text{ km}^2$.

Cause innesco: Precipitazioni elevate e prolungate sono segnalate da vari Cronisti coevi per l'Italia settentrionale (cfr. SANTI, 1897). Ad un autunno con piogge abbondanti e pressoché continue, fece seguito un inverno poco freddo. La neve appena caduta fondeva rapidamente, imbibendo il terreno. Nuove grandi piogge si verificano nel corso della primavera.

Porzioni più ridotte della frana del 1790 hanno manifestato nel tempo a venire diverse attivazioni, con zona di distacco generalmente individuabile in corrispondenza della grande scarpata in roccia a monte dell'attuale campo sportivo. Tra queste il Brunamonte (2003) ne segnala una nella prima metà del XIX secolo ed una nel 1939. Tra le cronache più recenti si può citare la attivazione del 4 marzo 2014, che ha interessato sempre la scarpata rocciosa di cui sopra, determinandone un arretramento che minaccia da vicino due case.

5. MODELLO DEL SOTTOSUOLO

5.1. Descrizione generale per i territori dell'Unione dei Comuni Montani "Valli Dolo, Dragone e Secchia"

In generale, il territorio dell'Unione dei Comuni Montani "Valli Dolo, Dragone e Secchia" è caratterizzato, come già detto in precedenza, dalla presenza di rocce ascrivibili a formazioni riconducibili ai domini ligure e toscano. Nella finestra tettonica di Gova affiorano anche rocce di dubbia attribuzione paleogeografica (Arenarie di Gova) che, secondo alcuni ricercatori, potrebbero essere ascrivibili al Dominio Umbro-Marchigiano-Romagnolo; nel settore nord del Comune di Prignano sono invece presenti formazioni attribuibili alla Successione Epiligure, nota in letteratura anche con attribuzioni quali successione "semi-autoctona" o "semi-alloctona", proprio per evidenziare il fatto che la sedimentazione è avvenuta durante un lasso di tempo di diverse decine di milioni di anni su un substrato (le unità Liguridi) in movimento dietro la spinta delle forze orogenetiche.

5.1.1. Unità Liguridi

Daniele e Plesi (2000) distinguono le successioni riferibili al dominio Ligure Esterno da quelle che non contengono, o comunque contengono in maniera poco rilevante, materiali oceanici e che pertanto potrebbero essersi sedimentate in un bacino caratterizzato da crosta di tipo continentale (margine adriatico) sia pur frammentata e assottigliata ("zona o dominio emiliano"). Nell'Appennino Settentrionale, al confine tra le Province di Modena e Reggio Emilia, le unità tettoniche Liguri Esterne sono, in ordine di impilamento strutturale dall'alto verso il basso, le seguenti (Figura 17):

- 4) Unità Monghidoro;
- 3) Unità Venano;
- 2) Unità ofiolitica della Val Baganza;
- 1) Unità Caio.

UNITÀ TETTONICA MONGHIDORO

Dell'Unità Monghiodoro, nell'area dell'Unione, affiorano principalmente le unità turbiditiche rispettivamente denominate Formazione di Monte Venere e Formazione di Monghidoro. In Val Dragone sono segnalati anche piccoli affioramenti attribuiti alle Argille Variegate di Grizzana Morandi (che probabilmente facevano parte del complesso di base dell'Unità di Monghidoro), mentre in Val Rossenna affiorano anche i terreni della parte più alta, e recente, della Successione, caratterizzati da composizione prevalentemente argillitico-marnosa o argillitica con tessitura a "blocchi in pelite" (Complesso del Rio Cargnone e Argille della Val Rossenna).

Il substrato di quasi l'intero territorio comunale di Palagano, di circa 2/3 del territorio di Montefiorino (parte orientale) e di circa 1/4 del territorio di Prignano è formato da rocce riferibili alle due formazioni menzionate.

La Formazione di Monte Venere (Campaniano Sup. – Maastrichtiano Sup.) è costituita prevalentemente da torbiditi arenaceo-marnose a base fine, di colore grigio-chiaro, in strati da medi a molto spessi, con a tetto sottili strati di argille grigio-scure o nerastre. Sono inoltre presenti intercalazioni, di alcuni metri di spessore, formate da strati arenaceo-pelitici, da sottili a spessi, e megatorbiditi calcareo-marnose in strati spessi fino a 15 m.

Anche la Formazione di Monghidoro (Maastrichtiano Sup. – Paleocene Sup.) è data principalmente da torbiditi arenaceo-pelitiche in strati spessi, nei quali in generale prevalgono i termini arenacei. Intercalati alle torbiditi possono poi esserci degli orizzonti formati da strati da sottili a medi di torbiditi pelitico arenacee, nelle quali prevale la componente più fine. Le arenarie sono solitamente gradate, con base a granulometria da media a grossolana, o anche micro-conglomeratica, localmente poco cementate, di colore grigio scuro. La componente argillosa, posta a tetto delle torbiditi, presenta solitamente una colorazione scura (da grigio cinerea a nerastra). Nella parte bassa della formazione sono presenti strati calcareo-marnosi con tracce di fucoidi.

UNITÀ TETTONICA VENANO

La successione che avrebbe dato origine all'Unità Venano è formata da due formazioni: le Argilliti dell'Uccelliera e le Arenarie di Poggio Mezzature che, nel territorio dell'Unione, affiorano in maniera limitata, principalmente nel Comune di Montefiorino, al confine con Frassinoro.

Le *Argilliti dell'Uccelliera* (di età non ancora definita), sono date da argille e argille siltose, generalmente rossastre, localmente verdine, alle quali s'intercalano strati arenacei sottili la cui composizione è simile a quella delle soprastanti Arenarie del Poggio Mezzature. Nella sua parte inferiore, la formazione presenta una composizione più eterogenea, con la presenza di strati, da centimetrici a decimetrici, di calcari e marne siltose.

Le *Arenarie del Poggio Mezzature* sono torbiditi arenaceo-pelitiche, in strati da sottili a medi (A/P>1), alternate a torbiditi spesse (fino a 4-5 m) e molto spesse, con grana anche grossolana (A/P>1). Le arenarie sono grigie, con tonalità grigio-scura o bruno-rossastra se alterate.

Come accennato, le due formazioni non affiorano estesamente nell'area dell'Unione; esse sono comuni in settori prossimi, lungo la dorsale a monte di Frassinoro che collega il Monte Modino al Poggio Mattioli dove, nella letteratura degli autori tedeschi, l'unità è denominata come Arenarie di Frassinoro (Reutter, 1969).

UNITÀ OFIOLITICA DELLA VAL BAGANZA

Sono ascrivibili a tale unità i basalti ofiolitici che formano masse rocciose – anche di grandi dimensioni – presenti nella Val Dragone (Cinghio del Corvo, Poggio Medola, Madonna del Calvario, il Sasso, Sassatella, Boccassuolo ecc.), ma anche affioramenti, presenti nell'area dell'Unione, attribuiti alla formazione delle Argille a Palombini. In associazione ai basalti sono presenti, presso l'omonima località, le Brecce Argillose del Poggio Bianco Dragone.

I "blocchi" ofiolitici (Figura 30) sono formati principalmente da basalti che, macroscopicamente, sono distinguibili in rossi (prevalentemente massivi e/o a cuscini) e verdi, o grigio-verdi (prevalentemente a struttura brecciata). I basalti rossi devono la loro colorazione a una maggiore presenza di ossidi amorfi di ferro (in genere limonite), che hanno permeato le innumerevoli fratture e mostrano struttura massiva o a *pillow*, con "cuscini" da decimetrici a metrici, i quali, a

loro volta, possono essere interessati da fratture interne ad andamento radiale o concentrico. I basalti verdi o grigio-verdi devono la loro colorazione alla presenza di minerali della famiglia della clorite, formatisi per l'alterazione della componente femica originaria, ora rappresentata in prevalenza da frammenti clinopirossenici.

Figura 30 – Basalti rossi alla base della massa ofiolitica del Poggio Bianco Dragone (fianco destro del Dragone, Comune di Palagano). Sulla sinistra, depositi riferibili alla zona di piede della frana di Tolara che, in passato, hanno determinato, probabilmente più volte, l'ostruzione del corso d'acqua e la formazione di un bacino lacustre effimero.

Le masse ofiolitiche sono accompagnate – in rapporti poco chiari, ma che sembrano quasi indicare che le ofioliti siano inglobate in esse – dalle Argille del Poggio Bianco Dragone, sia nell'omonima località che nei pressi del vicino cinghio del Corvo (località del Comune di Palagano). Si tratta di brecce a matrice argillosa che contengono clasti ofiolitici, calcarei e più subordinatamente arenacei; localmente sono anche presenti inclusi di Argille varicolori talvolta cartografabili (Plesi, 2002).

Le *Argille a Palombini* (*Barremiano-Turoniano*) formano gran parte dei versanti della Valle del Dragone, per lo meno di fondovalle e mezza costa, a sud di Poggio Medola (Comuni di Montefiorino e Palagano, al confine con Frassinoro). Con la loro composizione prevalentemente argillosa sono la causa principale della ben nota instabilità gravitativa che interessa i fianchi di tale valle. Sono composte principalmente da argille e argilliti siltose grigio scure, più raramente verdi, rossastre o grigio-azzurrognole, fissili, alternate a calcilutiti silicizzate grigio chiare e grigio-verdi, biancastre sulle superfici alterate. A causa delle intense deformazioni, l'originario ordine stratigrafico è andato quasi ovunque perduto e, alla scala dell'affioramento, l'unità presenta una

tessitura del tipo a "blocchi in pelite" (Bettelli et al., 1996), analoghi, dal punto di vista applicativo, alle così dette "bimrock" o eventualmente alle "bimsoil" (Barbero et al., 2006; Medley, 2001, 1999).

UNITÀ CAIO

Sono segnalate due aree di affioramento del Flysch di Monte Caio, al limite estremo sud del Comune di Palagano e sulla dorsale di collegamento tra Montefiorino e Frassinoro (settore sud del Comune di Montefiorino).

Il *Flysch di M. Caio* è prevalentemente formato da torbiditi arenaceo-marnose di colore grigio, in strati spessi e molto spessi, a base arenitica fine o siltitica e tetto pelitico. Nella parte alta degli intervalli marnosi si osservano spesso impronte di Elmintoidi.

5.1.2. Unità Subliguri

Sono presenti con un solo affioramento, presso Moncerato (Comune di Prignano) attribuito alla formazione delle Arenarie di Ponte Bratica, coinvolto nell'insieme di lembi formazionali di varia natura che costituiscono il così detto Melange di Coscogno (Bettelli et al., 1989a, 1989c). Si tratta di arenarie turbiditiche, a grana da fine a molto fine, in strati sottili (10–20 cm), alternate a peliti grigio-verdi (10–15 cm).

5.1.3. Unità di pertinenza toscana o di dubbia attribuzione paleogeografica

Nel territorio comunale di Montefiorino, in Val Dolo, e nel settore più meridionale del territorio di Palagano, affiorano rocce riferibili al dominio paleogeografico toscano (Plesi, 2002) per lo più ascrivibili alla Successione Cervarola e all'Unità di Monte Modino (sotto-unità Ventasso, così come definite in Chicchi e Plesi, 1995, 1992, 1991; Martini e Plesi, 1988; Mochi et al., 1996).

UNITÀ MODINO-SOTTOUNITÀ VENTASSO

La sottounità Ventasso corrisponde sostanzialmente all'unità Sestola-Vidiciatico della letteratura ed è formata da quei terreni di pertinenza toscana sovrascorsi sulla Successione Cervarola e su unità più esterne (Arenarie di Gova).

La Successione Modino, che avrebbe dato origine all'Unità Tettonica Modino, secondo lo schema di (Plesi, 2002), è formata dalle seguenti unità (in ordine dall'alto verso il basso):

- Marne di Civago;
- Arenarie di Vallorsara;
- Brecce di Tia;
- Marne di Marmoreto;
- Argille di Fiumalbo ;
- Flysch di Sorba;
- Flysch dell'Abetina reale;
- Formazione del Fosso della Ca';
- Successione argilloso-calcarea pre-campaniana (argille variegate, brecce argilliticocalcaree, Argille a Palombini).

Nell'area dell'Unione non sono presenti affioramenti attribuiti alle Brecce di Tia, al Flysch di Sorba e alle Marne di Civago (i cui affioramenti sono attribuiti alla Successione Cervarola), mentre le restanti formazioni elencante affiorano più o meno estesamente.

<u>Successione argilloso-calcarea pre-campaniana (argille variegate, brecce argillitico-calcaree, Argille a Palombini)</u>

È formata da lembi e scaglie tettoniche di unità di pertinenza ligure, quali argille a palombini, argille variegate e brecce argillitico-calcare; si tratta pertanto di terreni a dominate argillitica con inclusi arenacei e/o calcarei in frammenti e lembi di strato di dimensioni variabili da centimetriche a decametriche (*bimrock*: Barbero et al., 2006; Medley, 2001, 1999).

Formazione del Fosso della Ca'

È data da alternanze arenaceo-pelitiche turbiditiche, in strati sottili e medi, e da brecce poligeniche in banchi fino a qualche metro di spessore, intercalati a peliti grigio-scure o nerastre, manganesifere.

Flysch dell'Abetina Reale

È composta principalmente da alternanze di torbiditi calcareo-marnose o calcaree a base calcarenitica, in strati spessi fino a 2-3 metri, e di straterelli arenacei con abbondante pelite scura.

Argille di Fiumalbo

È una formazione a composizione complessa, costituita da membri diversi, la cui estensione cambia da zona a zona (Plesi, 2002). Nella parte bassa sono presenti argille varicolori marnose, rosse o verdastre, con intercalazioni di straterelli calcarenitico-marnosi, mentre la parte alta è composta principalmente da argilliti marnose grigio-cenere, con intercalazioni di strati sottili di siltiti e areniti fini; sono presenti localmente anche corpi di arenarie grossolane risedimentate (membro delle Arenarie di Monte Sassolera, presente ad esempio a sud ovest di Gusciola).

Marne di Marmoreto

La formazione è composta principalmente da marne siltose grigio chiare, a frattura prevalentemente scheggiosa. Localmente sono presenti straterelli arenacei e/o brecce argillosocalcaree.

Arenarie di Vallorsara

Sono arenarie silicoclastiche grigie, a grana da fine o molto fine, in strati da sottili a medi intercalati a interstrati spessi di natura pelitico-marnosa; localmente sono presenti depositi da *slumping*.

SUCCESSIONE CERVAROLA

Sono presenti in val Dolo (finestra di Gova) affioramenti riferibili alle Marne di Civago e alle Arenarie di Monte Cervarola.

Le *Marne di Civago* sono descrivibili in generale come marne scheggiose (per l'elevato contenuto in silice) di colore grigio, grigio verdognolo, stratificate, con la stratificazione resa evidente da

variazioni nella tonalità del colore e/o della granulometria e per la presenza di intercalazioni di strati arenaceo-siltosi.

La formazione delle *Arenarie del Monte Cervarola* è un'unità molto diffusa nell'Appennino Settentrionale. In generale è costituita da arenarie turbiditiche, in strati da spessi a molto spessi. Al suo interno si distinguono tuttavia diversi membri e litofacies. Per l'area dell'Unione la carta geologica regionale indica la presenza del membro del Torrente Dardagna in litofacies arenaceopelitica, nel quale si riconoscono torbiditi a grana fine in strati sottili e medi, torbiditi spesse e a grana grossolana e/o alternanze di torbiditi in strati medio spessi e di livelli a torbiditi sottili.

UNITÀ UMBRO-MARCHIGIANO ROMAGNOLE

Secondo alcuni autori, le Arenarie di Gova, che affiorano presso l'omonima località in finestra tettonica, presentano caratteristiche di affinità più con la Formazione Marnoso-Arenacea, affiorante diffusamente dalla Romagna fino all'Umbria, che non con le Arenarie del Monte Cervarola o con gli altri flysch di pertinenza toscana (Arenarie di Monte Modino e Macigno). Sono descrivibili come arenarie turbiditiche, in strati spessi a grana solitamente grossolana e con scarsa percentuale di intervalli pelitico marnosi.

5.1.4. Successione Epiligure

La Successione epiligure rappresenta il prodotto della sedimentazione avvenuta sulle unità Liguridi nell'intervallo di tempo compreso tra l'*Eocene Med.-Sup.* e il *Tortoniano*, mentre queste traslavano in seguito ai movimenti tettonici verso i domini subligure, toscano e umbro marchigiano-romagnolo (Bettelli et al., 1989b). Pressoché tutto il settore nord del Comune di Prignano presenta un substrato formato da rocce riferibili a unità epiliguri; altri sporadici affioramenti, principalmente di brecce argillose poligeniche, sono presenti anche nel Comune di Palagano.

Nel territorio di Prignano affiorano pressoché quasi tutti i termini della Successione Epiligure (Bettelli et al., 1989a, 1989b, 1989c), più in particolare (dal basso stratigrafico verso l'alto):

- Brecce argillose di Baiso;
- Marne di Monte Piano:
- Formazione di Ranzano;
- Marne di Antognola;
- Brecce argillose della Val Tiepido-Canossa;
- Formazione di Contignaco;
- Formazione di Pantano;
- Formazione del Termina.

La Successione Epiligure può essere suddivisa grossolanamente in due parti:

1. formazioni epiliguri pre-burdigaliane (dalle Brecce argillose poligeniche di Baiso fino alla Formazione di Contignaco), che si sono depositate in un ambiente sedimentario di tipo pelagico (sono torbiditi, emipelagiti e depositi da colata sottomarina tipo *debris flow* e *mud flow*) di mare profondo;

2. unità post-burdigaliane, che deriverebbero da processi di sedimentazione avvenuti in un ambiente di piattaforma o pelagico, ma meno profondo (Bettelli et al., 1989a, 1989b, 1989c; Mancin et al., 2006).

FORMAZIONI EPILIGURI PRE-BURDIGALIANE

Le *Brecce argillose di Baiso* sono costituite da diversi corpi di brecce sedimentarie poligeniche a prevalente matrice argillosa e a tessitura clastica, con clasti eterometrici ed eterogenei costituiti da litotipi appartenenti a varie unità liguri. In affioramento l'unità si presenta generalmente come una massa prevalentemente argillosa grigio scura, che ingloba frammenti litici eterometrici ed eterogenei (arenarie, calcari, argilliti, marne ecc.) ed è quindi inquadrabile come *bimrock* (Barbero et al., 2006; Medley, 2001, 1999).

Le *Marne di Monte Piano* sono costituite principalmente da argille, argilliti, argille marnose e marne di colore rosso, rosato, grigio chiaro e grigio verdi, con rari strati molto sottili di torbiditi arenacee biancastre, siltiti nerastre e calcari marnosi grigio-verdi. La stratificazione è generalmente poco evidente e complicata spesso da pieghe.

La *Formazione di Ranzano*, dal punto di vista litologico, è un'unità piuttosto eterogenea, nella quale dominano i termini arenacei di origine turbiditica. Essa è stata suddivisa in diversi membri sulla base del rapporto A/P (Arenaria/Pelite).

Le *Brecce argillose poligeniche della Val Tiepido-Canossa*, dal punto di vista pratico, assomigliano alle Brecce argillose di Baiso, già descritte. Si tratta di brecce argillose poligeniche formatesi come accumuli di processi di frana sottomarina di materiali prevalentemente argillosi appartenenti in gran parte ai complessi di base liguri.

La *Formazione di Antognola* è costituita in prevalenza da marne grigie a frattura globulare e, subordinatamente, da marne argillose con rare intercalazioni di strati sottili di arenarie fini e/o di marne. Caratteristica è l'assenza di macrofossili, mentre al microscopio, o anche solo con una lente di ingrandimento, è facile osservare gusci di microfossili planctonici. All'interno dell'unità sono stati inoltre distinti alcuni membri formati da arenarie turbiditiche (Membro delle Arenarie di Anconella).

La Formazione di Contignaco, in alcune sezioni della Carta Geologica dell'Appennino emilianoromagnolo alla scala 1:10.000, viene considerata un membro della Formazione di Antognola. Nei
nuovi fogli della Carta Geologica d'Italia alla scala 1:50.000 essa viene invece trattata come
formazione a sé stante. È data in generale da torbiditi sottili ed emipelagiti marnose, spesso
selciose, grigio biancastre; talora siltiti o arenarie fini o finissime risedimentate con patine
superficiali nerastre; marne carbonatiche e selciose, più o meno siltose, di colore grigioverdognolo o brunastre se alterate. Gli strati sono generalmente di spessore medio, spesso poco
evidenti.

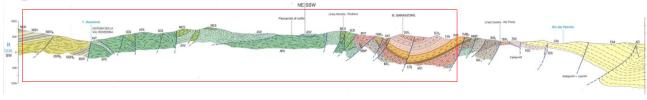
FORMAZIONI EPILIGURI POST-BURDIGALIANE

La *Formazione di Pantano* è stata elevata al rango di formazione da circa una quindicina d'anni (cfr ad es. Bettelli et al., 2002), in quanto in precedenza era considerata uno dei membri della ex Formazione di Bismantova, ora elevata al rango di Gruppo di Bismantova. L'unità è formata generalmente da arenarie grigio chiare, medio fini, in strati decimetrici, a volte poco distinguibili

per la bioturbazione intensa, oppure da calcareniti con frequenti resti di fossili di briozoi, lamellibranchi, coralli ecc.

La *Formazione del Termina* è alquanto eterogenea tanto che è stata suddivisa in diversi membri e litozone. In generale la composizione è a dominante marnosa. Possono essere tuttavia presenti anche corpi caotici di brecce argillose poligeniche e alternanze di arenarie medio fini turbiditiche e livelli marnosi. Dal punto di vista applicativo i diversi membri sono ascrivibili a unità litotecniche diverse.

5.2. Descrizione specifica del modello del sottosuolo relativa al territorio comunale di Prignano sulla Secchia e dell'area oggetto di MS3


I terreni delle formazioni di Monghidoro e di Montevenere compongono, pressoché in modo esclusivo, la stratigrafia del sottosuolo dei principali nuclei abitati della zona centro-meridionale del Comune: Castelvecchio, Prignano, Saltino, Pugnago. Nella parte orientale del Comune, la stratigrafia del sottosuolo degli abitati di Pescarola di sopra, Moncerato e S. Pellegrinetto è caratterizzata principalmente da terreni delle formazioni delle Argille a Palombini, Argille Varicolori di Cassio e Flysch di Monte Cassio. Nella restante parte settentrionale, nei pressi delle zone in esame di Casa Azzoni e Montebaranzone, la stratigrafia del sottosuolo è caratterizzata per lo più dalla Formazione del Termina.

La sezione di Figura 31, che attraversa il territorio comunale con direzione SO-NE, ricostruita nel Foglio nr. 219 "Sassuolo" della Carta Geologica d'Italia a scala 1:50.000 (Gasperi et al., 2005), passando a SE di Prignano e attraverso Pescarola di sopra e Montebaranzone, mostra uno spaccato di tutte le formazioni, con spessori a luoghi superiori a 500m.

Nel dettaglio, il Capoluogo si trova in corrispondenza del passaggio tra le formazioni di Monghidoro e di Montevenere, a nord-ovest, e le Argille a Palombini a sud-est, lungo il quale si sono verificati estesi fenomeni di scivolamento in blocco. Gran parte dell'edificato esistente di Prignano è situato nella zona compresa tra gli affioramenti rocciosi, in posto, delle due formazioni liguridi e i rispettivi blocchi dislocati. Ad est del capoluogo affiorano, appunto, le Argille a Palombini e le Argille Varicolori, formazioni intensamente deformate dalla tettonica e con assetti non riconoscibili. Il settore settentrionale del territorio comunale è invece caratterizzato dalla sinclinale di Montebaranzone, costituita da terreni litologicamente eterogenei della Formazione del Termina (nei metri più superficiali).

I depositi superficiali, probabilmente derivanti dall'alterazione, in ambiente morfoclimatico periglaciale, delle stesse formazioni di Montevenere e di Monghidoro, hanno dato origine, nel tempo, a fenomeni gravitativi che, in particolare, hanno coinvolto, e continuano a coinvolgere, il settore meridionale del territorio comunale, in corrispondenza del versante destro delle valli del F. Secchia e del T. Rossenna, principalmente in corrispondenza degli abitati di Saltino e Castelvecchio, ma anche, in parte, Prignano stesso. Altri fenomeni gravitativi, che interessano invece le formazioni argillose (Argille a Palombini e Argille Varicolori), coinvolgono principalmente

il settore sud-orientale del Comune, in corrispondenza degli abitati di Pescarola di sopra, Moncerato e S. Pellegrinetto.

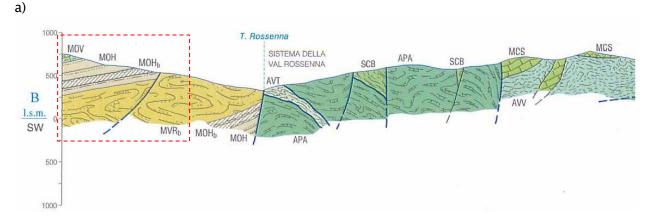


Figura 31 – a) Sezione geologica B–B' della Carta Geologica d'Italia a scala 1:50.000, Foglio nr. 219 "Sassuolo". Il rettangolo rosso identifica la porzione di territorio comunale di Prignano sulla Secchia intersecata dalla sezione stessa; b) Parte della sezione geologica B–B': il rettangolo rosso tratteggiato identifica la porzione di territorio comunale di Prignano sulla Secchia che meglio rappresenta i rapporti stratigrafici in corrispondenza dell'area di studio di Saltino.

In particolare, per quanto riguarda l'area in esame (rettangolo rosso tratteggiato in Figura 31), l'assetto è ereditato dalla più ampia struttura tettonica regionale, ovvero la Sinclinale della Val Rossenna, di cui le due formazioni di Montevenere e di Monghidoro costituiscono, in quest'area, il fianco rovesciato. Una sezione esemplificativa della Sinclinale della Val Rossenna è visibile in Figura 32.

In tale sezione è possibile individuare un segmento (circoscritto dal rettangolo rosso) ipoteticamente rappresentativo della configurazione stratigrafico-tettonica dell'area in esame per questo studio. Qui, gli strati della Formazione di Monghidoro affiorano in assetto rovesciato, sovrastando le Argille della Val Rossenna e le brecce argillose che costituiscono il nucleo della sinclinale e che affiorano poco più ad est dell'area di studio.

Il contatto tra MOH e MOV, verso SO, è stratigrafico.

b)

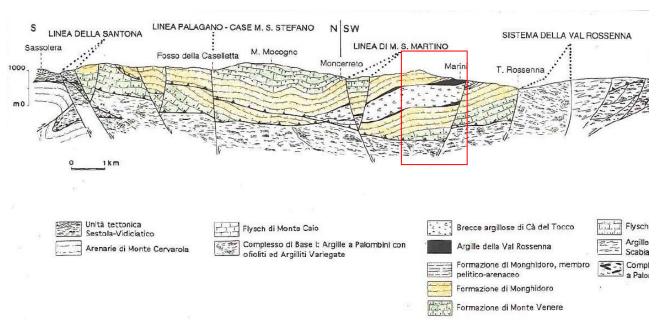


Figura 32 – Sezione geologica Barigazzo-Polinago-T. Rossenna, ad est dell'area di studio, rappresentativa della struttura sinclinalica rovesciata della Val Rossenna. (Fonte: Bettelli & Panini, 1992). Il rettangolo rosso identifica l'assetto stratigrafico-tettonico che più approssima quello della zona oggetto del presente studio.

Dettagli sulla stratigrafia dei primi metri dal piano campagna all'interno dell'area in esame provengono dall'unico sondaggio geognostico, a carotaggio continuo, eseguito in quest'area (in particolare per questo stesso studio di MS3), la cui ubicazione è visibile in Figura 33.

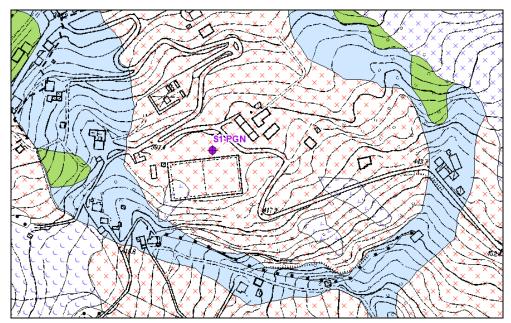


Figura 33 – Ubicazione del sondaggio a carotaggio continuo eseguito all'interno del corpo di frana in studio (settore sorgente), rappresentato dal cerchio viola con croce nera (sigla sondaggio: S1-PGN).

I primi 6,4 m dal piano campagna sono costituiti da materiale detritico ad organizzazione caotica, composto da frammenti arenacei a spigoli vivi immersi in matrice limo-argillosa-sabbiosa. Da qui a circa 10 m domina il limo argilloso-sabbioso con immersi clasti arenacei caoticamente

distribuiti. Un metro composto da clasti arenacei puliti è subito seguito da alternanze di livelli argilloso-sabbiosi, arenaria e clasti arenacei, fino a 12 m. Da qui a 14,5 m ridiviene predominante il limo argilloso. Da 14,5 m a circa 16 m è presente un livello di ghiaia arenacea, con alcuni blocchi arenacei: questo livello può essere sede di un acquifero in pressione poiché, durante il suo carotaggio, si è avuta una risalita d'acqua sino a +2 m dal piano campagna.

Oltre i 16 m aumenta il numero di blocchi arenacei e pelitici intervallati da ghiaia arenacea in matrice fine sino a circa 20 m. Da qui a circa 25 m divengono prevalenti i livelli composti da ghiaia arenacea, intervallata da livelli argillosi, ancorché ricchi di clasti a spigoli vivi. Da 25 a fine sondaggio (-27, 37 m) la sequenza è composta esclusivamente da arenaria, a luoghi altamente fratturata, caratterizzata da alta permeabilità poiché a 25 m si è verificata perdita dell'acqua di ricircolo del sondaggio.

6. DATI GEOTECNICI E GEOFISICI

La ricerca delle indagini geotecniche e geofisiche d'archivio è stata eseguita presso l'Ufficio Tecnico Comunale di Prignano sulla Secchia, ed ha permesso di acquisire numerosi dati geognostici contenuti in relazioni geologiche redatte a corredo di progetti di edilizia privata e di opere pubbliche.

Tutte le indagini sono state trasformate in formato digitale, georeferenziate, ed inserite in ambiente GIS. A tal proposito sia i dati di base, che i dati elaborati sono stati organizzati in formato vettoriale (*shapefile*) nel rispetto delle indicazioni per l'archiviazione informatica, rappresentazione e fornitura dei dati degli studi di microzonazione sismica e dell'analisi della Condizione Limite per l'Emergenza, di cui all'OPCM 4007/2012 e al Decreto del 16.03.2012 del Capo del Dipartimento della Protezione Civile.

Ad integrazione delle prove pregresse, è stata eseguita una campagna di indagini ad hoc, in modo da rendere il più omogenea e completa possibile l'analisi geognostica e geofisica dell'area interessata da questo approfondimento di III livello dello studio di microzonazione sismica (Figura 34).

In particolare sono stati realizzati *ex-novo*:

- n. 3 MASW (*Multichannel Spectral Analysis of Wawes*) finalizzate alla definizione dei profili di Vsh,
- n. 9 indagini di sismica passiva HVSR (*Horizzontal to Vertical Spectral Ratio*) finalizzate alla misura delle frequenze naturali del terreno, impiegando un tromografo digitale portatile,
- n. 2 profili sismici a rifrazione, finalizzati alla definizione dello spessore e della geometria bidimensionale dei sismostrati presenti in corrispondenza della piana artigianale sul corpo di frana e della possibile zona sorgente del movimento franoso,

 n. 1 sondaggio geognostico a carotaggio continuo per la definizione del profilo stratigrafico in corrispondenza della zona sorgente del corpo di frana.

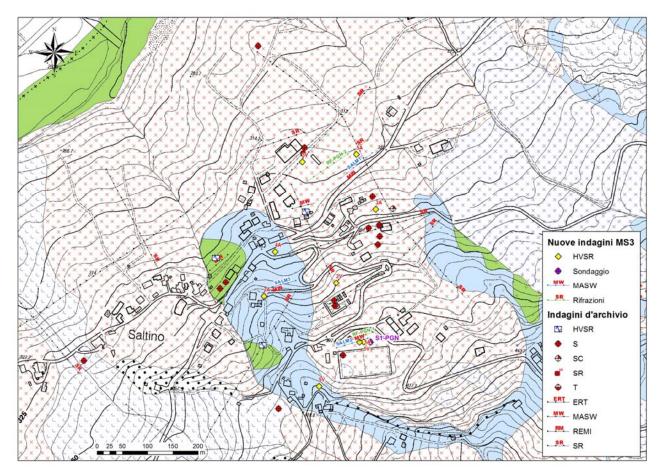
Sondaggi a carotaggio continuo

Per quanto riguarda il sondaggio a carotaggio continuo realizzato per questo studio, la stratigrafia è già stata ampiamente descritta nel capitolo 5.2 a cui si rimanda.

Qui si ritiene utile mostrare quanto emerso dalle penetrometrie dinamiche in foro (SPT) eseguite all'interno dello stesso foro di sondaggio.

Le prove hanno interessato in parte lo spessore limo-argilloso/sabbioso compreso tra 6,4 e 10 m e, in parte, lo spessore limo-argilloso compreso tra 11 e 14,5 m.

Per quanto riguarda il <u>primo dei due strati</u>, l'angolo di attrito di picco è risultato variabile tra **45°** e **47°**, con valore medio pari a 46° , in base alla correlazione di Dunham (1954) che lega il parametro geotecnico al valore di N_{spt} e di N_{60} per terreni con clasti angolari.


Relativamente al parametro coesione non drenata, pertinente alla frazione fine del detrito, i valori sono risultati variabili tra **247** e **309** kPa, secondo le correlazioni proposte da Sowers (1979) per argille di bassa plasticità e limi argillosi.

Per quanto riguarda il <u>secondo strato</u>, l'angolo di attrito di picco è risultato variabile tra **42°** e **44°**, in base alla correlazione di Dunham (1954) che lega il parametro geotecnico al valore di N_{spt} e di N_{60} per terreni con clasti angolari granulometricamente uniformi.

Relativamente al parametro coesione non drenata, pertinente alla frazione fine del detrito, i valori sono risultati variabili tra **65 e 81 kPa**, secondo la correlazione proposta da Dunham (1954) che lega il parametro geotecnico al valore di N_{spt} e di N₆₀ per terreni con clasti angolari.

Relativamente al parametro coesione non drenata, pertinente alla frazione fine del detrito, i valori sono risultati variabili tra 188 e 235 kPa, secondo le correlazioni proposte da Sowers (1979) per argille di bassa plasticità e limi argillosi.

E' chiaro che in occasione dell'esecuzione della prova SPT, il numero di colpi registrato è necessariamente il risultato di una risposta meccanica a cui contribuiscono sia l'angolo di attrito interno della frazione incoerente (ed in parte anche di quella fine, coesiva), sia la coesione non drenata della frazione fine; pertanto, i valori di attrito interno e coesione non drenata ottenuti non sono rappresentativi della situazione reale del deposito, bensì di una assimilazione dello stesso ad un deposito puramente incoerente, in un caso, e ad un deposito puramente coesivo, nell'altro.

Figura 34 – Ubicazione dei sondaggi geognostici e geofisici eseguiti per lo studio di MS3, unitamente a quelli d'archivio. Le indagini lineari di nuova esecuzione per questo studio hanno etichette colorate: blu per le MASW e verde per le rifrazioni.

MASW

Come si vede da Figura 35, 2 indagini MASW sono state eseguite al di fuori della frana in studio (Old22 e SALM3) mentre 3 indagini sono state eseguite all'interno della frana (SALM2, Old23 e SALM1): la prima in corrispondenza della zona sorgente, la seconda e la terza in corrispondenza della zona di transito della frana. In Allegato 2 si possono visionare i documenti relativi alle acquisizioni ed alle elaborazioni delle indagini MASW d'archivio e di nuova esecuzione.

All'esterno del corpo di frana (Figura 36), i profili di Vs indicano velocità già discrete nei primi metri superficiali, comprese tra 200 e 300 m/s tra 0 e 5 m. Se non si percepiscono sensibili variazioni con la profondità in corrispondenza della SALM3 fino a 15 m, la Old22 mostra invece un repentino incremento dei valori fino a circa 15 m, dove si raggiunge il massimo di quasi 700 m/s. In ambito esterno al corpo di frana, pertanto, il bedrock sismico sembra attestarsi in prossimità dei 15 m, preceduto da uno spessore di substrato roccioso alterato dotato di discreti valori di Vs.

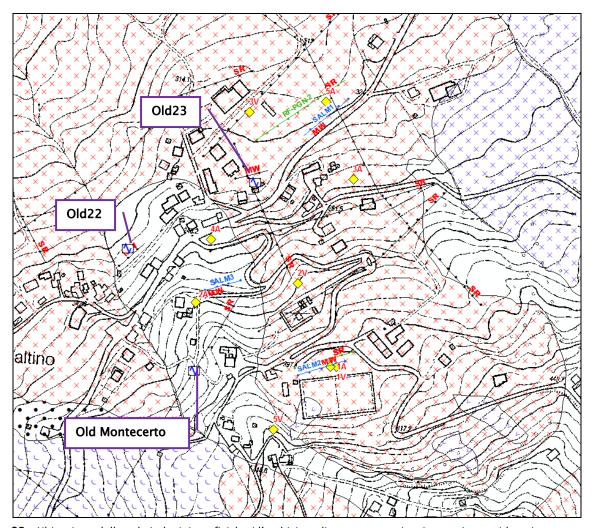
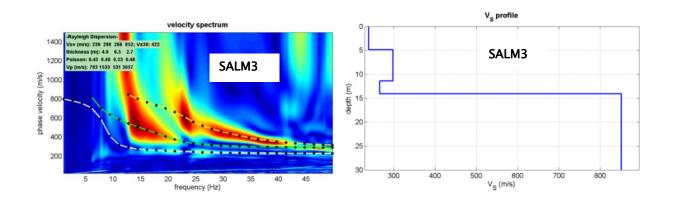



Figura 35 – Ubicazione delle sole indagini geofisiche (d'archivio e di nuova esecuzione) prese in considerazione per questo studio.

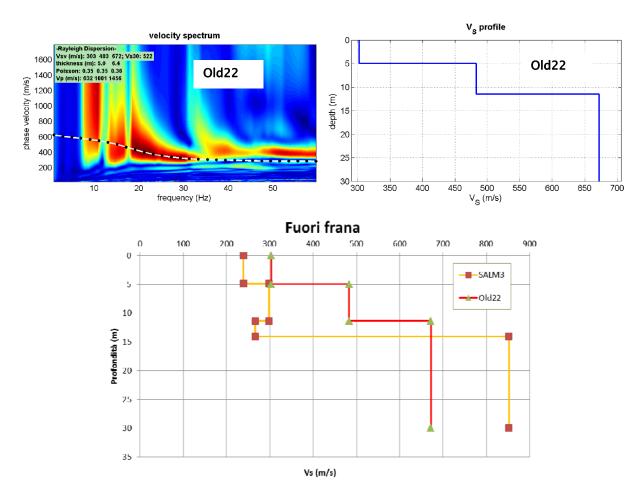
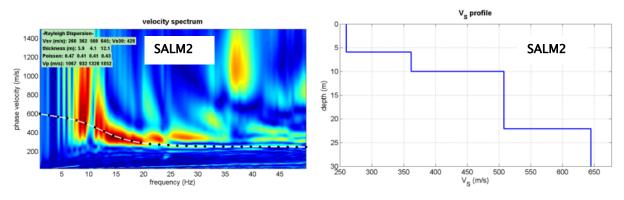



Figura 36 - Profili sismostratigrafici ricostruiti dalle indagini MASW eseguite al di fuori del corpo di frana.

All'interno del corpo di frana (Figura 37), i primi 5 m mostrano velocità tutto sommato comparabili a quelle che caratterizzano lo stesso spessore in ambito esterno alla frana, prossime a 250 m/s, e che possono pertanto essere attribuibili ad uno spessore detritico superficiale ubiquitario.

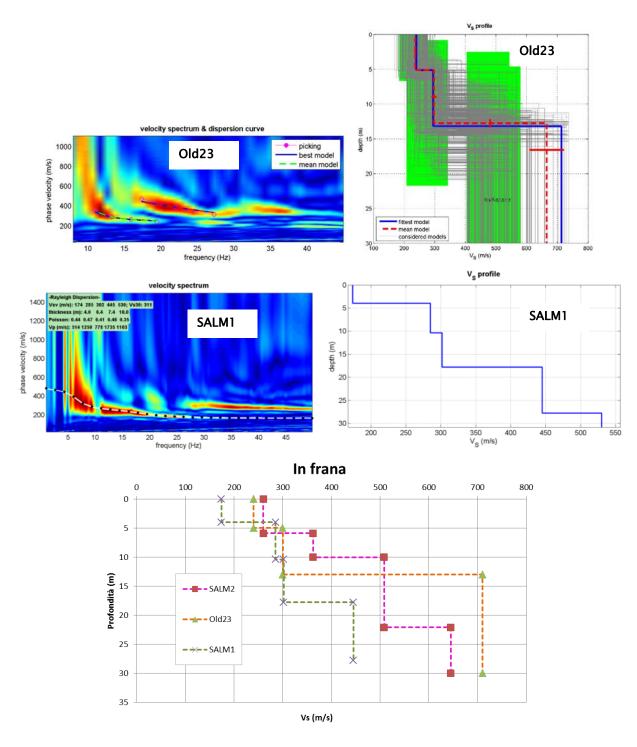
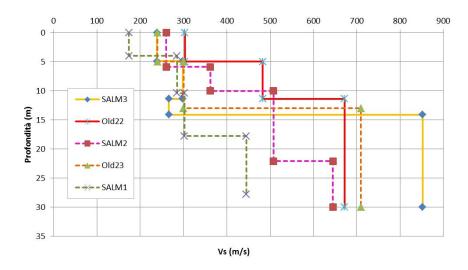
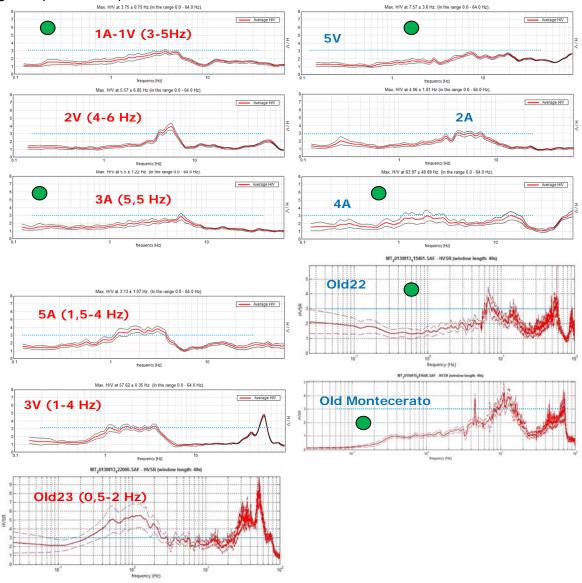



Figura 37 - Profili sismostratigrafici ricostruiti dalle indagini MASW eseguite all'interno del corpo di frana.

Solo SALM1 mostra, nei primi 5 m, velocità relativamente più basse, inferiori a 200 m/s. I profili di velocità mostrano tutti un graduale incremento delle velocità con la profondità, raggiungendo valori prossimi a 700 m/s a 15 m in Old23, a 650 m/s in SALM2 e a 450 m/s in SALM1. Come si vede, SALM1 è caratterizzata da un profilo di Vs che può essere facilmente essere espressione di un deposito di frana; SALM2 mostra valori decisamente più alti di SALM1, ma non raggiunge velocità comparabili a quelle di un bedrock sismico: per questo può ancora essere considerato

espressione di deposito di frana, ma in zona sorgente (come l'analisi geomorfologica suggerisce), dove la profondità del deposito è naturalmente inferiore rispetto alle zone di transito e, soprattutto, di accumulo.


Figura 38 – Confronto tra i profili sismostratigrafici ricostruiti dalle indagini MASW eseguite all'interno del corpo di frana (linee tratteggiate) ed all'esterno del corpo di frana (linee continue).

Old23 sembra il profilo più simile, dei tre in frana, ai profili di ambito esterno (Figura 38), con un brusco incremento di velocità a circa 15 m, verso valori già piuttosto prossimi a quelli del bedrock sismico. In effetti, dal punto di vista geomorfologico, Old23 è stata eseguita poco più a valle di una linea di cresta che parte dal cimitero e termina più o meno in corrispondenza della strada provinciale SP24. Benché interna al più ampio corpo di frana in esame, tale cresta potrebbe essere il risultato di una dislocazione rocciosa determinata dall'evento franoso storico del 1790 (o addirittura da un evento precedente): localmente conserva caratteri morfologici simili ad una cresta rocciosa in posto, ma le caratteristiche di resistenza geomeccanica possono essere alquanto inferiori a quelle di un affioramento non dislocato, dando pertanto ragione dei più bassi valori di Vs rispetto agli ambiti esterni.

HVSR

I risultati delle misure di rumore sismico ambientale (Figura 39 e Allegato 3), effettuate nell'area di studio ed in un suo più ampio intorno, sembrano evidenziare differenze nelle curve H/V all'interno e all'esterno del corpo di frana. All'interno sono stati individuati massimi nelle curve H/V che, procedendo verso valle, si fanno sempre più ampi in termini di range di frequenze che danno valori di H/V maggiori-uguali a 3, quasi ad indicare, per la zona di transito, una serie di superfici di risonanza che potrebbero coincidere con diversi eventi di frana sovrapposti nel tempo. All'esterno, in generale, le curve non mostrano picchi significativi, al netto delle frequenze più alte che possono coincidere con superfici antropiche. La frequenza di risonanza, rilevata in corrispondenza dei picchi maggiori, varia tra 2 e 3 Hz e tra 4 e 5 Hz.

Questo quadro sembra indicare una dicotomia tra zona in frana e substrato affiorante al contorno. Inoltre, anche all'interno dello stesso corpo di frana, solo in corrispondenza delle HVSR di valle (5A, 3V e Old23) è risultata evidente la presenza di una (o più) superficie di risonanza, mentre ciò non risulta altrettanto evidente nelle porzioni più a monte, prossime alla zona sorgente, (1A, 2V, 3A), il cui profilo è simile a quello delle zone esterne alla frana (5V, 2A, 4A). Si può quindi supporre che il detrito di frana sia notevolmente ridotto nelle zone sorgente e raggiunga, invece, maggiore spessore in quelle di accumulo.

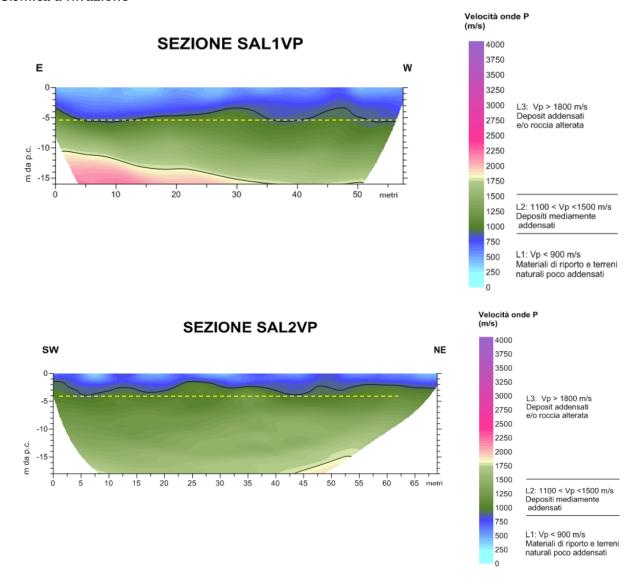


Figura 39 – Curve H/V ricavate dalle indagini HVSR effettuate **internamente** (sinistra) ed **esternamente** (destra) al corpo di frana. Le linee punteggiate blu marcano la soglia di amplificazione del rapporto H/V pari a 3. I punti verdi identificano curve con sostanziale assenza di picchi di risonanza (amplificazione < 3) – al netto dei picchi alle frequenze più alte.

Un'ipotesi alternativa potrebbe essere quella che vede, nelle zone sorgente, la presenza di materiale roccioso dislocato (a seguito, ad esempio, di uno scivolamento in roccia), che mantiene una certa integrità strutturale e che, quindi, offre scarso contrasto d'impedenza con il substrato

non mobilizzato. Di contro, a valle possono aver prevalso fenomeni di colata/scivolamento detritici/terra, come evoluzione dei fenomeni a monte: da qui un maggiore contrasto d'impedenza col substrato sottostante.

Sismica a rifrazione

Figura 40 – Tomografie sismiche a rifrazione eseguite all'interno del corpo di frana in esame per questo studio. Per l'ubicazione degli stendimenti si vedano figura 35 e figura 36.

Nella sostanza, le tomografie sismiche (Allegato 4) confermano la sismostratigrafia locale individuata dalle altre indagini ed un progressivo aumento della rigidezza dei materiali con la profondità. In entrambi i settori (SAL1VP: zona sorgente; SAL2VP: zona transito/accumulo) è presente uno strato superficiale scarsamente addensato, di spessore variabile tra 3 e 5 m (SAL1VP) e tra 2 e 4 m (SAL2VP). Ad esso segue un sismostrato mediamente addensato, il cui spessore aumenta procedendo da monte verso valle, dove raggiunge un valore di circa 10-15 m.

Comparando questo dato con quanto emerso dalle indagini MASW (SALM2 e SALM1), tale strato corrisponderebbe al detrito di frana che, da monte verso valle, aumenta il suo spessore diminuendo la sua rigidezza.

7. INTERPRETAZIONI E INCERTEZZE

Le indagini MASW hanno fornito nel complesso buoni risultati. In generale, le acquisizioni effettuate hanno permesso di registrare un segnale sismico sufficientemente chiaro da consentire una elaborazione che ha dato risultati attendibili per le aree in studio.

In alcuni stendimenti effettuati il segnale registrato presenta dei disturbi e delle distorsioni nei sismogrammi, legate per lo più a problematiche di natura ambientale.

Si premette che la situazione ideale per l'effettuazione di un'acquisizione sismica attiva con metodo MASW è quella caratterizzata da una superficie topografica pianeggiante con una stratificazione nel sottosuolo piano-parallela alla superficie topografica.

Partendo da questo presupposto, appare evidente che le zone montane sulle quali sono state effettuate le indagini geofisiche non corrispondono ad una situazione ideale. Proprio per questo in alcuni siti di indagine si sono presentate le seguenti problematiche:

- Irregolarità della superficie topografica delle aree su cui è stato eseguito lo stendimento sismico. In questi casi si è cercato comunque di utilizzare al meglio lo spazio a disposizione cercando di posizionare i geofoni secondo un allineamento il più orizzontale possibile.
- Elevata inclinazione dei versanti. Alcune aree su cui sono state effettuale le indagini presentano una pendenza elevata, situazione non ideale che ha generato treni d'onda anomali nei sismogrammi.
- La presenza di un sottosuolo con andamento stratigrafico irregolare e non piano-parallelo e talvolta la presenza di un substrato sub-affiorante hanno fatto registrare un segnale sismico non regolare con treni d'onda anomali che si discostavano dall'andamento generale.

In fase di elaborazione i sismogrammi sono stati filtrati e selezionati in modo da tagliare eventuali distorsioni ed anomalie. Questo ha permesso di utilizzare tutte le acquisizioni effettuate seppur in alcuni casi l'interpretazione effettuata presenti alcune incertezze.

Un altro limite importante è stato quello di avere a disposizione solo indagini geognostiche superficiali, quali ad esempio prove penetrometriche dinamiche o sondaggi con escavatore, ma di non avere indagini geognostiche profonde e diffuse sul territorio (a meno dell'unico sondaggio realizzato per questo studio), come sondaggi a carotaggio continuo o dati di pozzi, che sarebbero stati molto utili nell'interpretazione sismo-stratigrafica.

Per quanto riguarda le indagini HVSR, al fine di determinare la qualità delle singole misure H/V effettuate e la loro relativa affidabilità, necessaria per una corretta fase interpretativa, si è

provveduto alla classificazione delle prove valutando, in accordo con i più recenti studi in materia, le caratteristiche dei fondamentali principi su cui si basa la tecnica di indagine a sismica passiva utilizzata.

La tecnica HVSR permette in primo luogo di valutare la frequenza di vibrazione naturale di un sito. Le ipotesi alla base della tecnica sono: una concentrazione del contenuto in frequenza localizzato maggiormente in quelle basse (tipicamente al di sotto dei 20 Hz); assenza di sorgenti periodiche e/o con contenuto in alte frequenze; le sorgenti di rumore sono uniformemente distribuite intorno alla stazione di registrazione.

Considerato che le indagini HVSR sono state eseguite, nella maggior parte dei casi, in aree isolate e prive di sorgenti che potessero arrecare disturbo all'acquisizione, si possono ritenere valide le registrazioni effettuate.

L'indagine ha previsto una registrazione del rumore ambientale lungo tre direzioni ortogonali tra loro (x,y,z) con una singola stazione. Tale registrazione è stata effettuata, secondo le indicazioni del progetto SESAME, per una durata di 20 minuti.

Successivamente si è proceduto all'elaborazione utilizzando il software WINMASW della Eliosoft; dopo aver eseguito un'operazione detta di *windowing*, in cui le tre tracce registrate vengono suddivise in finestre temporali di prefissata durata, queste finestre vengono filtrate in base a dei criteri che permettono di individuare l'eventuale presenza di transienti (disturbi temporanei con grandi contributi nelle frequenze alte) o di fenomeni di saturazione.

Al termine dell'elaborazione per ogni acquisizione è stato valutato l'andamento complessivo della curva H/V, prestando particolare attenzione, durante la fase di elaborazione, alla plausibilità fisica della curva stessa, verificabile attraverso l'individuazione di massimi caratterizzati da una diminuzione localizzata di ampiezza dello spettro verticale.

Le frequenze di picco ottenute da ogni singola stazione sono state correlate con i risultati ottenuti dalle indagini MASW eseguite sui siti in studio.

Per quanto riguarda gli stendimenti a **sismica a rifrazione**, eseguiti all'interno del corpo di frana per questo studio, non sono state incontrate particolari difficoltà d'esecuzione e d'interpretazione. La sezione SAL1VP presenta un livello più superficiale, correlabile con l'unità sismica L1, caratterizzato da spessori variabili tra 3 e 5 m circa. Il passaggio all'unità sottostante risulta evidenziato da un incremento del gradiente delle velocità, più accentuato da inizio sezione fino a circa 30 m; l'andamento dell'interfaccia L1/L2 ha andamento irregolare con massime oscillazioni di profondità di circa 2 m. L'unità sismica L2 presenta un progressivo aumento di spessore da W verso E, passando da circa 7 m ad inizio sezione, ad oltre 10 m all'estremità opposta. Il passaggio all'unità più profonda individuata (L3) risulta ben definito con un'interfaccia sostanzialmente regolare.

Nella sezione SAL2VP, a partire da p.c. si osserva un livello associabile all'unità sismica L1 avente spessore medio di 3-4 m con blande escursione di profondità. Il passaggio all'unita sismica L2 risulta sostanzialmente definito da un incremento del gradiente delle curve di isovelocità. L'unità L2 interessa la maggior parte della sezione, approfondendosi fino alla massima profondità indagata (15 m da p.c.) ad eccezione di un breve tratto di circa 10 m di lunghezza dove è osservabile il passaggio all'unità sismica L3.

Per quanto riguarda il **sondaggio geognostico** eseguito all'interno del corpo di frana, non si sono manifestate particolari problematiche. La natura principalmente limo-argilloso-sabbiosa fino a circa 15 m ha permesso un'agevole perforazione. Maggiori difficoltà si sono manifestate oltre i 15 m, fino a fondo foro (27,37 m) allorché maggiore è la frequenza di ghiaia e ciottoli arenacei e pelitici la cui perforazione è avvenuta mediante l'utilizzo di un doppio carotiere.

8. METODOLOGIE DI ELABORAZIONE E RISULTATI

In questo capitolo verranno brevemente riassunti i risultati della microzonazione sismica di I e II livello nell'area d'indagine. Si darà, quindi, ampio spazio alla descrizione della metodologia seguita per le analisi di III livello ed alla discussione dei risultati.

8.1. La microzonazione sismica di I e II livello nell'area d'indagine (sintesi)

I risultati delle indagini di microzonazione sismica di I e II livello (Figura 41), eseguiti dallo scrivente, mostrano per l'area in esame la presenza di una frana quiescente, di tipologia non definita, identificata dal codice "3024", al cui interno è presente una misurazione di rumore ambientale nella zona di transito/accumulo, con valore di frequenza fondamentale pari a 1,4 Hz, indicativo della presenza di una superficie risonante <u>non</u> superficiale (prossima a circa 35 m).

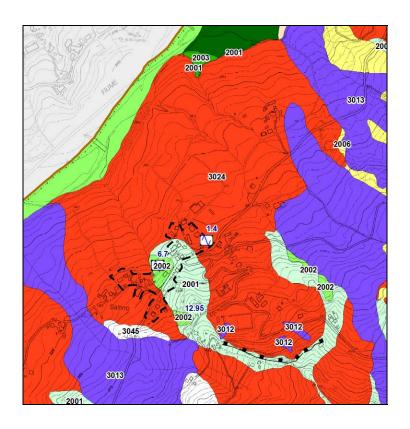


Figura 41 - Stralcio della "Carta delle microzone omogenee in prospettiva sismica" del Comune di Prignano sulla Secchia (2015).

In corrispondenza della scarpata principale della frana sono presenti 3 frane di minori dimensioni ed attive (codice "3012").

Il valore della frequenza fondamentale, con un'ampiezza del picco H/V superiore a 3, è indicativa di un contrasto di rigidezza tutto sommato sensibile. La VsH (dove H è prossimo a 15 m) è risultata pari a 196 m/s, mentre le tre carte di microzonazione sismica di Il livello identificano l'area come zona suscettibile di instabilità di versante (Figura 42).

Le zone suscettibili di instabilità sono aree nelle quali gli effetti sismici attesi e predominanti, oltre ai fenomeni di amplificazione, sono riconducibili a deformazioni permanenti del terreno (instabilità di versante in presenza di pendii instabili e potenzialmente instabili). Fanno parte di questa categoria le zone suscettibili di instabilità di versante ed in queste zone sono richiesti approfondimenti di terzo livello.

Nel seguente capitolo 8.2 verranno, pertanto, presentati la metodologia ed i risultati dell'analisi di microzonazione sismica di III livello eseguita per l'area in esame, i cui dati sono stati già ampiamente descritti nei capitoli precedenti, derivati da: analisi geomorfologica di dettaglio, indagini geognostiche e geofisiche.

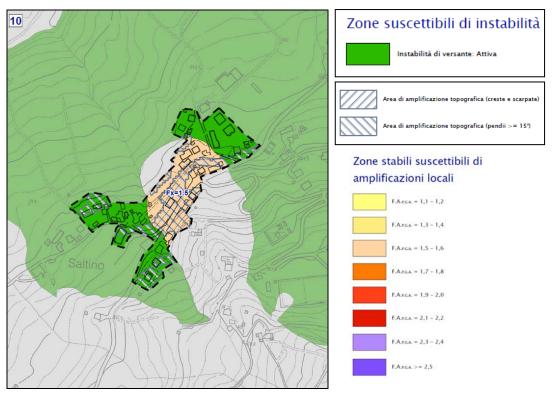


Figura 42 - Stralcio della "Carta di microzonazione sismica di II livello" del Comune di Prignano sulla Secchia.

8.2. Analisi di III livello per l'area d'indagine

Le <u>elaborazioni propedeutiche alla valutazione della pericolosità locale</u>, a cura del Prof. D. Albarello, sono contenute nella relazione in Allegato 5-CD, redatta per tutte le tre aree da sottoporre ad analisi di III livello all'interno dei tre Comuni dell'Unione. Le elaborazioni propedeutiche hanno permesso di ricavare:

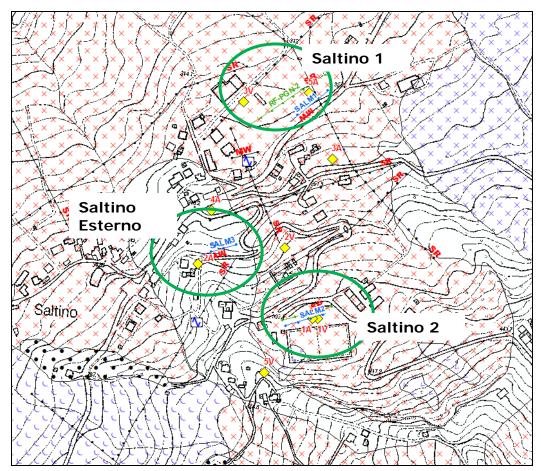
- i profili di velocità delle onde S rappresentativi del volume instabile (corpo di frana) e del substrato;
- il rapporto di smorzamento del materiale all'interno del corpo di frana;
- i profili di deformazione all'interno del corpo di frana;
- una stima della geometria della superficie di scivolamento;
- gli spettri elastici di risposta, sia in termini di pseudo-velocità che di pseudo-accelerazione al basamento sismico e alla superficie del corpo di frana;
- l'amplificazione relativa ai valori di PGA e dell'Intensità di Housner nei periodi 0.1-0.5s e 0.5-1s;
- I fattori di amplificazione (FA) in accelerazione relativi ai bassi periodi, FV per alti periodi e Ft (topografica) sulla base di una modellazione 2D lungo sezioni rappresentative;
- gli accelerogrammi in superficie.

Gli obiettivi sopra elencati sono stati raggiunti attraverso:

- modellazione numerica 1D della risposta sismica locale (in campo lineare equivalente), includendo l'effetto delle possibili incertezze sui dati di base e valutando per le diverse parti dell'area di studio:
 - o lo spettro di risposta elastico (al 5% di smorzamento),
 - o i parametri dello spettro semplificato previsto dalla normativa che meglio di adatti allo spettro di risposta ottenuto dalle analisi numeriche e
 - o i possibili accelerogrammi di riferimento per la eventuale verifica in campo dinamico delle strutture.
- modellazione numerica 2D della risposta sismica locale nelle aree dove gli effetti topografici potrebbero potenzialmente alterare la risposta sismica locale stimata mediante la modellazione 1D.

Di seguito verranno proposte le sole elaborazioni per l'area in frana di Prignano sulla Secchia (località "Saltino"), a cui seguirà l'analisi di pericolosità da instabilità di versante, a cura dello scrivente, rimandando alla succitata relazione a cura del Prof. D. Albarello per maggiori dettagli. L'analisi di pericolosità ha come obiettivo finale il calcolo del massimo spostamento co-sismico del corpo di frana, qui eseguito secondo la metodologia di Newmark (1965). I valori di spostamento co-sismico sono infatti utilizzati dalle linee guida nazionali come indice della pericolosità locale per frane sismo-indotte.

8.2.1. Inversione congiunta delle curve di dispersione ed H/V


Come si è visto, l'esame esplorativo delle curve di dispersione e delle curve H/V (Capitolo 6) non mostra la presenza di possibili transizioni significative (si legga "contrasti di impedenza evidenti") negli spessori più superficiali dell'area indagata. Questo implica la necessità di definire, almeno in via approssimata, la posizione del substrato rigido (ovvero il "bedrock sismico"), al di sotto dell'area in frana, dove applicare il moto sismico di riferimento e valutare gli effetti della risposta sismica locale. Inoltre, allo scopo di eseguire analisi di risposta sismica locale è necessario vincolare il profilo di velocità delle onde di taglio nelle diverse parti dell'area di studio.

Sono state quindi eseguite delle inversioni congiunte relative alle curve di dispersione ed alle curve H/V corrispondenti (Figura 43 e Figura 44) utilizzando una procedura agli Algoritmi Genetici (p.es., Picozzi e Albarello, 2007; Albarello et al., 2011) che permette di gestire la marcata non linearità del problema consentendo, nel contempo, di stimare le incertezze relative ai risultati ottenuti. Quest'ultimo punto è di estrema importanza per la valutazione della risposta sismica locale in chiave di sicurezza sismica in quanto permette di effettuare valutazioni conservative della risposta sismica locale. Il metodo è basato sull'assunzione di una configurazione del sottosuolo essenzialmente 1D almeno alla scala delle misure effettuate localmente (in pratica degli stendimenti MASW considerati). Le misure tomografiche in onde P condotte in questo studio confermano la validità dell'ipotesi per la zona di studio.

Nel complesso sono state eseguite inversioni congiunte relativamente ai siti nelle ellissi verdi in Figura 43. I risultati prodotti dalle inversioni sono riportati in Figura 45. Per ogni sito, la procedura di inversione è stata eseguita almeno 10 volte in modo da esplorare in modo più completo lo spettro delle possibili soluzioni. Come si vede, l'impiego dell'approccio qui considerato, consente

anche una stima di massima del livello di incertezza associato alle stime del profilo di Vs infine determinato. Questo elemento è assai importante ai fini di una stima cautelativa dei possibili effetti di amplificazione stratigrafica indotti dalle coperture nell'area di studio.

In generale, al netto delle notevoli incertezze relative ai modelli sismostratigrafici prodotti dalle inversioni, sembra possibile collocare il substrato sismico (Vs>800 m/s) a profondità variabili da 40 a 60 m. Per tutte le aree, la profondità del bedrock risulta comunque al di sotto dei livelli raggiungibili con misure standard in foro. Le inversioni mostrano la presenza di una <u>prima transizione ben marcata</u> nella rigidezza dei terreni a profondità di circa 20 metri, in corrispondenza dei due siti di misura interni al corpo di frana, mentre nel sito esterno (su supposto substrato affiorante), la prima marcata transizione si ha già a 10 m.

Figura 43 – Individuazione dei siti in cui sono state eseguite le inversioni congiunte (ellissi in verde). In Figura 44sono riportate le coppie MASW/HVSR per ogni sito.

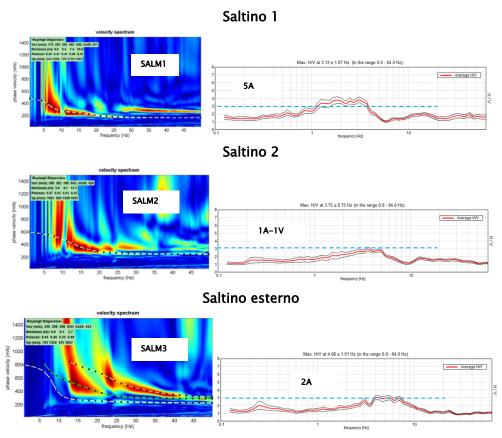
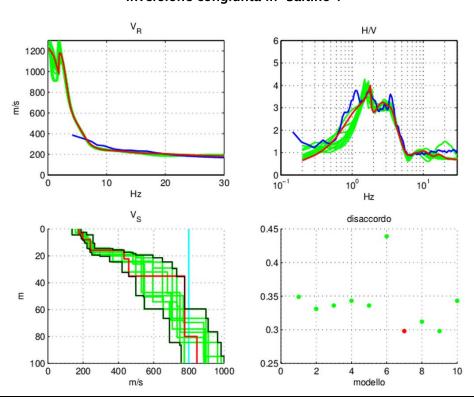



Figura 44 - Coppie MASW/HVSR utilizzate nei tre siti individuati dalle ellissi verdi in Figura 43 per condurre le inversioni congiunte.

Inversione congiunta in "Saltino 1"

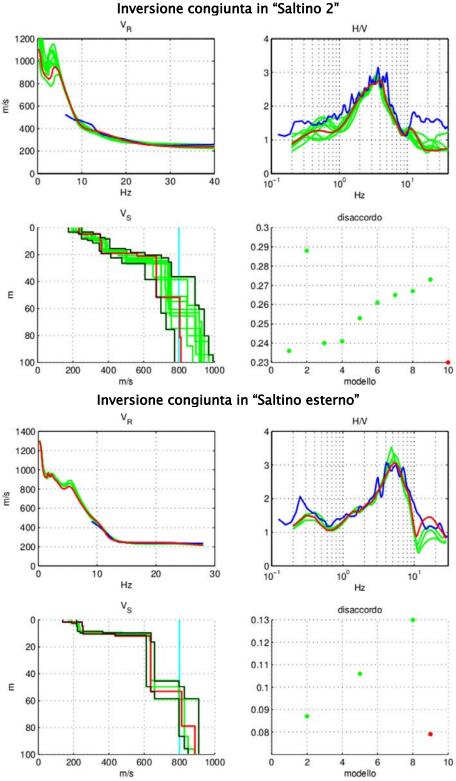


Figura 45 – Risultati delle inversioni congiunte delle curve di dispersione sperimentali (in blu nei riquadri in alto a sinistra) e delle curve H/V (in blu nei riquadri in alto a destra) relative ai siti "Saltino 1", "Saltino 2" e "Saltino esterno" (si veda Figura 43). Le curve in rosso indicano il risultato di migliore adattamento. Nei riquadri in basso a sinistra è riportato (in rosso) il migliore profilo di velocità delle onde, corrispondente al valore di disaccordo minimo (punto rosso nei riquadri in basso a destra). Gli altri punti, nelle figure in basso a destra, corrispondono alle curve in verde dei grafici in basso a sinistra. Tutte le curve in verde corrispondono ai valori relativi alle configurazioni giudicate comunque 'compatibili' con le osservazioni

Comune di Prignano sulla Secchia – Provincia di Modena Microzonazione Sismica – 3° Livello di Approfondimento Relazione Illustrativa

(ovvero con un disaccordo entro il doppio del minimo assoluto). Le curve nere nei riquadri in basso a sinistra limitano gli intervalli di confidenza (incertezza) associati ai valori di Vs alle varie profondità. La linea verticale azzurra nello stesso

8.2.2. Analisi della risposta sismica locale (1D)

grafico indica gli 800 m/s.

A partire dai risultati delle indagini effettuate fino a questo punto è stata quindi eseguita una valutazione della risposta sismica locale nell'area di studio. La procedura di calcolo è quella lineare equivalente implementata nel codice di calcolo STRATA (Rathje e Kottke, 2013). L'uso di un codice di questo genere è giustificato dalla sismicità relativamente bassa dell'area e dal carattere grossolano dei sedimenti presenti che non sembrano potenzialmente in grado di innescare fenomeni di marcata non-linearità non gestibili attraverso questo tipo di modello di calcolo.

Un importante vantaggio legato a questo codice di calcolo è la possibilità che esso offre di gestire le significative incertezze presenti nei dati di modellazione (moto di riferimento, profilo di Vs, curve di smorzamento e riduzione del modulo di taglio) permettendo di fornire stime adeguatamente conservative degli spettri di scuotimento attesi. Il moto di riferimento prescelto è costituito per ogni sito dai tre accelerogrammi forniti dalla Regione Emilia-Romagna¹⁶. Si tratta di tre accelerogrammi compatibili con la pericolosità locale relativa ad una probabilità di eccedenza del 10% in 50 anni. Gli accelerogrammi sono relativi ad un terreno di riferimento (affiorante) caratterizzato da valori delle velocità di propagazione delle onde S almeno pari a 800 m/s.

La modellazione 1D è stata effettuata applicando il profilo di velocità ricavato dall'inversione e consentendo variazioni stocastiche del profilo stesso all'interno degli intervalli di confidenza dedotti dall'inversione. Per ottenere una stima conservativa della risposta sismica locale, il basamento sismico è stato collocato alla profondità minima fra quelle compatibili con i risultati delle inversioni congiunte (vedasi capitolo 8.2.1). Per quanto riguarda le curve di smorzamento e di riduzione del modulo di taglio, dato il carattere grossolano dei materiali presenti nel sottosuolo dell'area indagata, per la caratterizzazione delle curve di smorzamento e riduzione del modulo di taglio si è fatto riferimento alle curve di letteratura proposte da Rollins et al. (1998).

Le ampie incertezze relative a queste curve sono state modellate utilizzando la forma e la parametrizzazione proposta da Darendeli (2001). Per ogni sito sono state effettuate 50 simulazioni per ciascun accelerogramma.

Allo scopo di ottenere stime conservative degli spettri di risposta, si è deciso di adottare per ogni analisi lo spettro di risposta caratterizzato da una probabilità di eccedenza del 10% e quindi compatibile con le stime di pericolosità sismica (relative ad una probabilità di eccedenza del 10% in 50 anni). Oltre agli spettri di risposta in accelerazione dalle simulazioni numeriche è anche possibile dedurre i profili del valore di massima deformazione lungo la colonna stratigrafica analizzata. Questo profilo aiuta a definire la parte più deformabile della struttura stratigrafica permettendo di identificare la parte del materiale in frana potenzialmente attivabile in caso di terremoto.

¹⁶ URL breve: https://goo.gl/gHU7wz

I risultati ottenuti mediante le analisi 1D sono riportati in forma completa nell'Allegato 3 della relazione a cura del Prof. Albarello, allegata a questo elaborato. La Tabella 1sintetizza i risultati ottenuti per i valori di <u>PGA e PGV (alla superficie)</u> nei diversi siti di misura. Laddove il valore di PGA è costante per ogni località, il valore di PGV varia nei singoli accelerogrammi. Per valore di PGV in input si è quindi considerato il valore caratterizzato da una probabilità di eccedenza del 10% stimato dai tre valori di PGV nell'assunzione che seguano una distribuzione log normale.

		PGA (g)			PGV (cm/s)	
	Input	Output (90%)	Ampl	Input (90%)	Output (90%)	Ampl
Saltino 1	0.16	0.36	2.25	8.94	24.26	2.71
Saltino 2	0.16	0.30	1.88	8.94	16.23	1.82
Saltino Esterno	0.16	0.32	2.00	8.94	16.78	1.88

Tabella 1 – Risultati dell'analisi di risposta sismica locale 1D nei siti di misura di Saltino (Figura 43). 'Ampl' indica il rapporto di amplificazione fra il moto atteso alla superfice della colonna stratigrafica considerata e il moto in input (applicato al tetto del bedrock sismico).

Nella modellazione sono stati anche calcolati i <u>profili di massima deformazione</u> lungo le diverse colonne stratigrafiche (Allegato 4 della relazione a cura del Prof. Albarello). Si può osservare (Figura 46) come all'interno della frana i valori di deformazione attesa varino grandemente (da 0.16% a 0.06%).

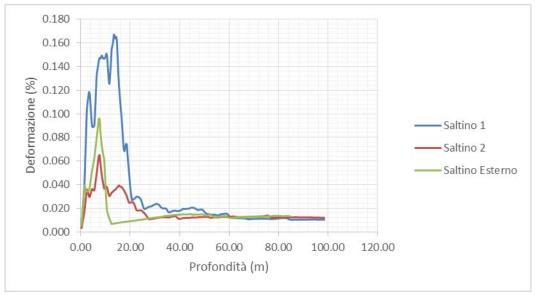


Figura 46 - Andamento della deformazione massima per i punti di misura relativi all'area di studio.

Nel punto Saltino 1, la deformazione è massima e sembra coinvolgere spessori che raggiungono i 20–30 m (superficie di scorrimento?). In Saltino 1, la deformazione maggiore si concentra entro i 20 m. Nel sito Saltino 2 i livelli deformativi relativamente maggiori coinvolgono sempre i primi 20 m, ma con un unico picco intorno ai 10 m; nel complesso, i livelli deformativi sono molto inferiori rispetto a quelli di Saltino 1. Queste differenze sembrano confermare le ipotesi geomorfologiche per cui in Saltino 2 si ha una zona sorgente dove il materiale di frana conserva una buona rigidezza a seguito, probabilmente, di uno scivolamento in blocco di roccia che può avere in qualche modo preservato (a luoghi) l'integrità della roccia mobilizzata. In Saltino 1, più a valle, il

materiale di frana risulta maggiormente deformabile, forse a seguito di una più intensa disgregazione conseguente ad un maggiore trasporto lungo il versante.

In Saltino esterno sembra esistere uno strato meno resistente con uno spessore che non supera i 10 m, subito seguito da livelli deformativi pressoché nulli, ad indicare la presenza di una coltre detritica superficiale che ricopre direttamente il substrato geologico, rigido.

La modellazione numerica ha anche permesso di calcolare i <u>valori di Vs</u> (velocità di propagazione delle onde di taglio) compatibili con il massimo livello di deformazione raggiunto in fase cosismica. In questo caso si è scelto di considerare come rappresentativo il valore mediano fra quelli ottenuti dalle simulazioni allo scopo di evitare stime sotto-conservative legate a rigidezze maggiori ottenute dalla simulazione.

In Figura 47 vengono mostrati i profili di Vs per i punti di misura della località Saltino. Si nota la presenza di un forte aumento del gradiente di velocità a profondità di circa 20 metri (Saltino 1) e di 30 metri circa (Saltino 2), entrambi all'interno del corpo di frana. Un brusco salto di velocità sembra esistere anche all'esterno del corpo di frana, ma a profondità minore, pari a circa 10m. Le velocità all'interno del presunto corpo di frana sembrano differenti nei due punti di misura: più basse nel sito di Saltino 1 (circa 150 m/s) e più alte nel punto Saltino 2 (250–300 m/s). Il materiale in posto mostra valori di Vs compresi fra 500 e 700 m/s.

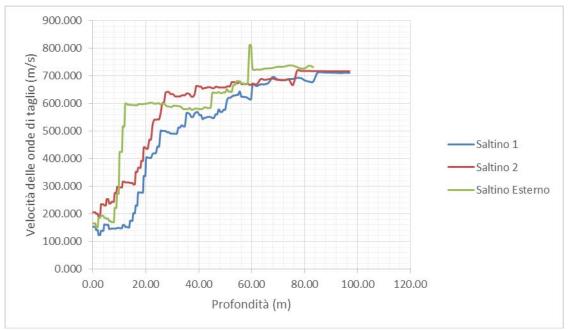


Figura 47 – Andamento dei valori di velocità delle onde di taglio per i punti di misura relativi all'area di studio.

La Figura 48 mostra invece i profili del <u>rapporto di smorzamento</u> ottenuti nei diversi punti di analisi. I valori relativi sono riportati nell'Allegato 6 della relazione a cura del Prof. Albarello. Come per i profili di massima deformazione, anche i profili dello smorzamento mostrano i valori più alti nei due settori di frana, dalla superficie fino a circa 20 m, con maggiori ampiezze nella zona di transito/deposito (Saltino 1) e minori ampiezze nel settore sorgente (Saltino 2). Nel settore esterno lo smorzamento è evidente solo nei primi 10 m.

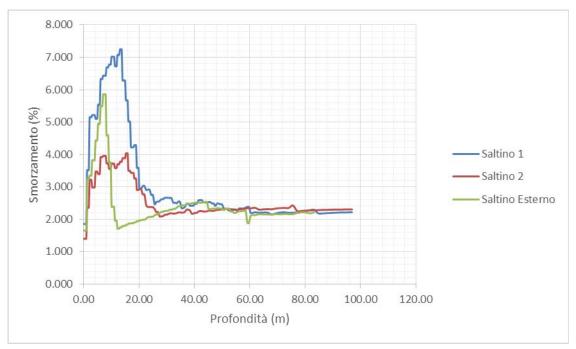


Figura 48 - Andamento dei valori dello smorzamento (in %) per i punti di misura relativi all'area di studio.

I risultati relativi alle stime degli spettri di risposta elastici con smorzamento al 5% (Figura 49) sono riportati nell'Allegato 7 della relazione a cura del Prof. Albarello. Lo spettro di risposta di riferimento (al basamento sismico affiorante) è quello corrispondente al 90° percentile (probabilità di eccedenza del 10%) della popolazione dei diversi spettri di risposta relativi al moto di input utilizzato per la località. Allo stesso modo è stato ottenuto lo spettro di risposta alla superficie per ogni sito di analisi. La Figura 49 mostra le forme di questi spettri. I rispettivi valori di FA per l'intensità di Housner (o "intensità dello spettro di risposta") nei tre siti di analisi sono riportati in Tabella 2.

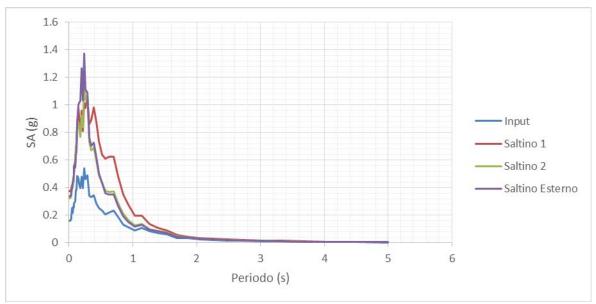
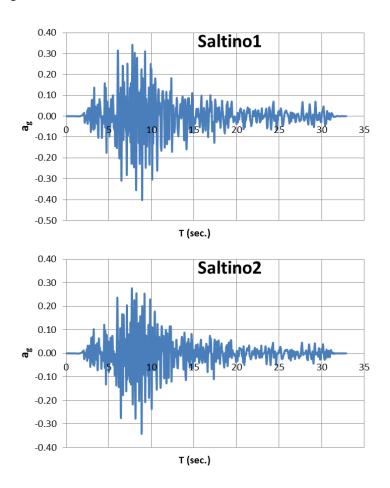



Figura 49 – Spettri di risposta relativi al sito di Saltino per i punti di analisi in Figura 43.

	FA _{0.1-0.5}	FA _{0.5-1}	FA _{0.5-1.5}	I _{0.1-0.5}	I _{0.5-1}	I _{0.5-1.5}	lo _{0.1-0.5}	lo _{0.5-1}	lo _{0.5-1.5}
Saltino 1	2.45	2.65	2.22	0.06	0.11	0.19	0.15	0.29	0.43
Saltino 2	2.06	1.61	1.45	0.06	0.11	0.19	0.12	0.18	0.28
Saltino esterno	2.24	1.54	1.39	0.06	0.11	0.19	0.14	0.17	0.27

Tabella 2 – FA: fattori di amplificazione dell'intensità dello spettro di risposta (o di Housner); I: intensità di Housner alla superficie (in m); lo : intensità di Housner al basamento affiorante (in m), nei tre intervalli di periodo 0–0.5s, 0.5–1s e 0.5–1.5s per i siti di analisi nella località di Saltino (Figura 43).

Per ciascun punto di analisi è stato identificato un accelerogramma di riferimento. Fra tutti quelli generati dalle simulazioni numeriche si è scelto per ogni sito quello caratterizzato da uno spettro di risposta più simile allo spettro considerato rappresentativo del sito (si veda in proposito l'Allegato 7 della relazione a cura del Prof. Albarello). I valori di accelerazione sono riportati (in frazioni di g) nell'Allegato 8 della stessa relazione.

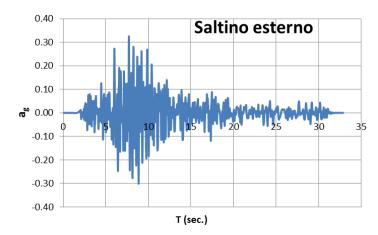


Figura 50 - Accelerogrammi generati alla superficie topografica dei tre siti dall'analisi di risposta sismica locale 1D.

8.2.3. Caratteristiche del corpo di frana dedotte dai risultati della modellazione 1D

A partire dai risultati ottenuti dalle analisi condotte fino a questo punto è possibile trarre alcune conclusioni riguardo alle caratteristiche geometriche e sismiche del corpo di frana esaminato in località Saltino.

Nei due punti di misura relativi al presunto corpo di frana si evidenzia una variazione del gradiente di velocità delle onde di taglio che nell'intervallo di profondità compreso fra 15 e 30 m porta le velocità da valori inferiori a 300 m/s a valori superiori a 500 m/s, per poi crescere con maggiore gradualità. Anche la massima deformazione co-sismica e il massimo smorzamento si raggiungono a profondità inferiori ai 20 m. Gli andamenti di questi parametri nel sito posto presumibilmente all'esterno del corpo di frana sono marcatamente diversi, con una transizione importante (analoga a quella degli altri due siti) a profondità più modeste (attorno ai 10m di profondità). Va notato che i valori di Vs in tutti e tre i siti si attestano sui 200 m/s nei primi 10 metri per poi salire in modo più o meno graduale e raggiungere i 600 m/s a profondità superiori a 30 m. Si potrebbe ipotizzare la presenza generale di uno strato superficiale di materiale detritico o di riporto con spessori inferiori ai 10 m. Il materiale soggiacente è in generale caratterizzato da velocità delle onde S dell'ordine dei 600 m/s. In corrispondenza del corpo di frana, questo materiale è stato mobilizzato degradando le sue proprietà meccaniche (in modo eterogeneo nelle diverse parti della frana) fino ad una profondità dell'ordine dei 15–20 dove potrebbero essere presenti più superfici di scorrimento che hanno accomodato, nel tempo, il movimento franoso.

8.2.4. Analisi di risposta sismica locale 2D

In generale, il contrasto di impedenza rilevato alla base del presunto corpo di frana è relativamente ridotto. Quindi sembra poco probabile il verificarsi di possibili effetti di intrappolamento 2D all'interno del corpo di frana identificato. Tuttavia, nell'area sono presenti forti gradienti topografici che potrebbero indurre effetti di focalizzazione o conversione di fase non trascurabili e quindi produrre una potenziale sottovalutazione dell'entità dei fenomeni sismici prodotta dall'impiego di un semplice approccio 1D. E' quindi stata comunque eseguita un'analisi

Comune di Prignano sulla Secchia – Provincia di Modena Microzonazione Sismica – 3° Livello di Approfondimento Relazione Illustrativa

dei possibili effetti 2D mediante modellazione numerica agli Elementi Finiti in campo lineare-equivalente.

I calcoli sono stati effettuati mediante il codice LSR-2D prodotto dalla ditta STACEC (http://www.stacec.com/) e rappresenta un'implementazione evoluta della procedura lineare-equivalente inizialmente proposta da Hudson et al. (1994) nell'implementazione QUAD4M. Per ottenere la massima compatibilità con le analisi 1D effettuate, le curve di degrado e smorzamento per i materiali presenti sono state le stesse di quelle utilizzate nella modellazione 1D. La modellazione ha riguardato sezioni longitudinali del corpo di frana lungo la direzione del massimo gradiente topografico. Il moto di riferimento è quello costituito dai tre accelerogrammi (nella sola componente orizzontale) utilizzati per la modellazione 1D delle tre località. Le geometrie dei diversi strati di terreno ed i valori di Vs assegnati sono stati dedotti dai risultati della modellazione 1D.

A differenza delle modellazioni 1D, la modellazione per i diversi punti di misura è stata iterata tre volte (una per ognuno degli accelerogrammi di riferimento utilizzati), ma senza variare stocasticamente le caratteristiche del modello. In queste condizioni, i valori delle diverse grandezze rappresentative della risposta sismica locale dei diversi punti di misura (spettri di risposta, fattori di amplificazione ecc.) sono quelle associate alla media dei valori ottenuti per i diversi moti di riferimento. In questo senso la scelta è meno conservativa di quella operata nel caso delle modellazioni 1D. Va tenuto comunque in considerazione che le semplificazioni delle caratteristiche stratigrafiche, rese necessarie dalla maggiore complessità dei calcoli, tendono a sovrastimare l'entità dei contrasti di impedenza sismica e quindi ad aumentare i possibili effetti di risonanza.

Tutti i risultati relativi alle modellazioni 2D effettuate sono riportati in Allegato 9 della relazione a cura del Prof. Albarello. Nel seguito viene riportata solo una breve sintesi dei risultati ottenuti per l'area di Saltino.

Innanzi tutto vale la pena di valutare la portata complessiva degli effetti 2D confrontando i risultati ottenuti nella modellazione 1D con quella 2D in termini di valori di FA ottenuti nel diversi punti di misura (Tabella 3).

	Mod	ellazion	e 1D	Mod	ellazion	e 2D	Differer	iza perc	entuale
	FA _{0.1-0.5}	FA _{0.5-1}	FA _{0.5-1.5}	FA _{0.1-0.5}	FA _{0.5-1}	FA _{0.5-1.5}	FA _{0.1-0.5}	FA _{0.5-1}	FA _{0.5-1.5}
Saltino 1	2.45	2.65	2.22	2.55	2.66	2.3	4	0	3
Saltino 2	2.06	1.61	1.45	1.71	1.24	1.21	-17	-23	-16

Tabella 3 – Confronto fra i fattori amplificazione dell'intensità dello spettro di risposta (o di Housner) ottenuti mediante la modellazione 1D e quella 2D.

Il confronto dei dati in tabella è di particolare interesse in quanto non dipende dalla diversa scelta del percentile utilizzato per rappresentare gli spettri di risposta del moto di riferimento e del moto alla superficie (90° percentile nel caso della modellazione 1D e 50° nel caso della modellazione 2D: più conservativo il primo e meno il secondo). Si può notare come le stime di amplificazione

prodotte dalla modellazione 2D siano, in un sito (Saltino 2) meno gravose di quelle 1D, con differenze percentuali che raggiungono al massimo un valore del 23%. Laddove, invece, la morfologia diviene più complessa (Saltino 1), con pendenze più pronunciate, ecco che le stime di amplificazione 2D risultano leggermente più gravose, con un valore massimo del 4%. Questo risultato generale indica come le caratteristiche geometriche dell'area indagata rendano necessaria una modellazione 2D per valutare effetti di focalizzazione e morfologici che possono essere assai importanti.

La geometria del modello utilizzato per l'analisi 2D è riportato in Figura 51. I dettagli del modello sono riportati in Allegato 9 della relazione a cura del Prof. Albarello, in forma di una specifica relazione descrittiva nel formato previsto dal codice di calcolo adottato.

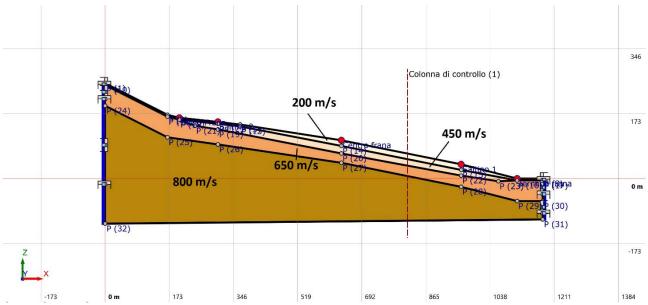


Figura 51 – Modello 2D della frana di Saltino. Il modello ha la stessa scala nelle direzioni verticale ed orizzontale. Il moto di riferimento (relativo alla sola componente orizzontale del moto) è applicato alla base del modello. I punti in rosso (Saltino 1, Saltino 2 e Saltino centro frana) indicano i punti di misura per i quali vengono forniti i valori numerici dello spettro di risposta e relativi fattori di amplificazione. La colonna di controllo è utilizzata per la generazione dei profili di massima deformazione co-sismica e massimo smorzamento.

Nella Tabella 4 sono sintetizzati i valori dei valoro di PGA (in g) e dell'amplificazione relativi ai tre punti di interesse Saltino 1, Saltino 2 e Saltino centro per i tre accelerogrammi considerati.

		PGA (g)			
	Accelerogramma 1	Accelerogramma 2	Accelerogramma 3	Media	Ampl
Saltino 1	0.36	0.30	0.25	0.31	1.91
Saltino 2	0.24	0.25	0.24	0.25	1.54
Saltino centro	0.27	0.32	0.21	0.27	1.68
Input	0.16	0.16	0.16	0.16	

Tabella 4 – Valori di **PGA** (in g) relativi ai punti in figura 52 dedotti dalla modellazione 2D e fattori di amplificazione (**Ampl**) rispetto al valore di accelerazione al bedrock.

Si vede come i massimi effetti di amplificazione si manifestino al centro e nel settore di transito/piede della frana.

Questi effetti 2D sono ancora più evidenti quando viene valutato il livello totale di deformazione co-sismica (Figura 52). Si vede come la deformazione massima sia spostata verso il centro della frana e riguardi essenzialmente una profondità attorno ai 10–20 m, raggiungendo valori massimi dell'ordine di 0.17% (Figura 53). Un analogo andamento è mostrato dallo smorzamento con valori che superano il 10% (Figura 54).

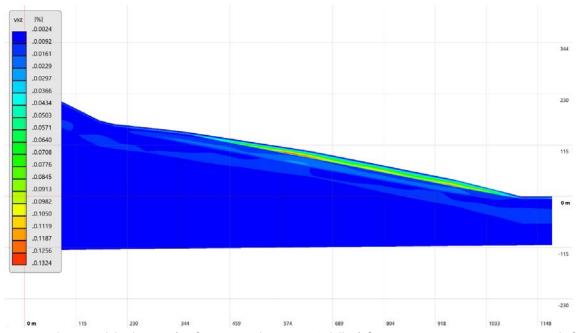
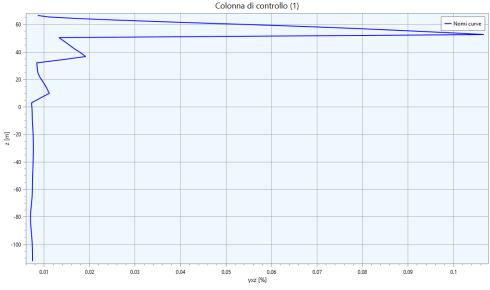



Figura 52 – Distribuzione del valore medio (fra i tre accelerogrammi) della deformazione massima co-sismica per la frana di Palagano secondo la modellazione 2D. Le profondità sono date rispetto alla base del profilo.

Figura 53 – Profilo del valore **medio** (fra i diversi accelerogrammi) della **massima deformazione co-sismica** in corrispondenza della <u>colonna di controllo</u> (in Figura 50) nella frana di Saltino. Le profondità sono date rispetto alla base del profilo topografico.

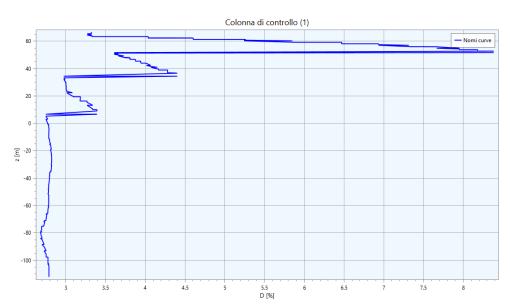
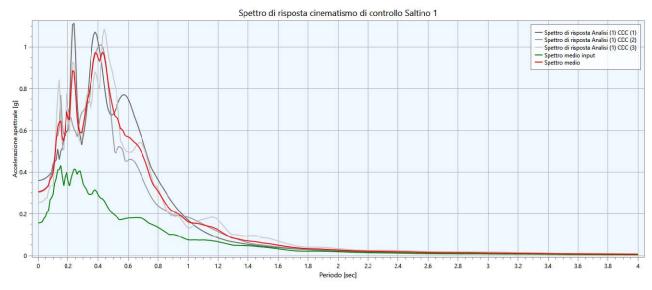
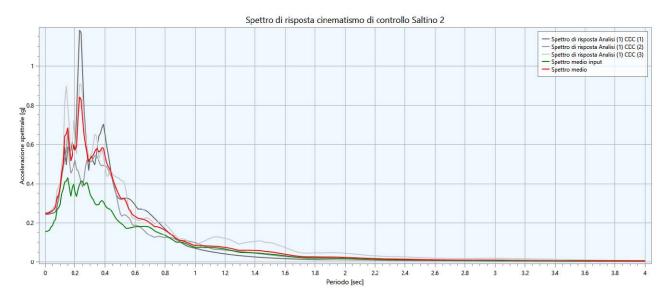




Figura 54 – Profilo del valore medio (fra i diversi accelerogrammi) del massimo smorzamento in corrispondenza della colonna di controllo (in Figura 51) nella frana di Saltino. Le profondità sono date rispetto alla base del profilo topografico.

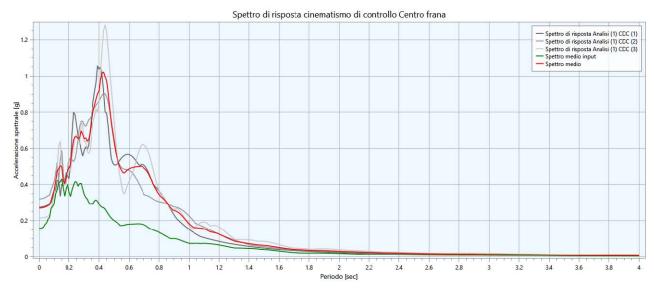

Le Figure 55-57 seguenti, mostrano gli spettri di risposta ottenuti per i tre punti in rosso della Figura 50. I valori numerici dei diversi spettri di risposta sono riportati nell'Allegato 9 della relazione a cura del Prof. Albarello, mentre la Tabella 5 riporta i valori relativi alle intensità di Housner calcolate per gli spettri di risposta medi.

Figura 55 – Spettri di risposta relativi ai tre accelerogrammi di riferimento per Saltino relativamente al punto Saltino 1 in Figura 50 (in grigio). Vengono anche riportati lo spettro medio del moto di riferimento (in verde) e quello di risposta medio per i tre accelerogrammi (in rosso).

Figura 56 – Spettri di risposta relativi ai tre accelerogrammi di riferimento per Saltino relativamente al punto Saltino 2 in Figura 50 (in grigio). Vengono anche riportati lo spettro medio del moto di riferimento (in verde) e quello di risposta medio per i tre accelerogrammi (in rosso).

Figura 57 – Spettri di risposta relativi ai tre accelerogrammi di riferimento per Saltino relativamente al punto Saltino centro in Figura 51 (in grigio). Vengono anche riportati lo spettro medio del moto di riferimento (in verde) e quello di risposta medio per i tre accelerogrammi (in rosso).

	FA _{0.1-0.5}	FA _{0.5-1}	FA _{0.5-1.5}	I _{0.1-0.5}	l _{0.5-1}	I _{0.5-1.5}	lo _{0.1-0.5}	lo _{0.5-1}	lo _{0.5-1.5}
Saltino 2	1.71	1.24	1.21	0.10	0.10	0.17	0.06	0.08	0.14
Saltino centro	2.40	2.69	2.35	0.14	0.22	0.32	0.06	0.08	0.14
Saltino 1	2.55	2.66	2.30	0.15	0.21	0.31	0.06	0.08	0.14

Tabella 5 – FA: fattori di amplificazione dell'intensità dello spettro di risposta (o di Housner); I: intensità di Housner alla superficie (in m); **lo**: intensità di Housner al basamento affiorante (in m), nei tre intervalli di periodo 0.1–0.5, 0.5–1 e 0.5–1.5 ottenuti dalla modellazione 2D per i siti di misura lungo il profilo della frana di Saltino (Figura 51).

8.2.5. Calcolo del massimo spostamento co-sismico tramite l'approccio di Newmark

La stima degli spostamenti permanenti del pendio è stata effettuata tramite l'approccio semplificato ideato da Newmark (1965), che assimila la massa potenzialmente instabile ad un blocco rigido che scivola lungo un piano ruvido, inclinato. Il metodo richiede la conoscenza dell'accelerazione critica (a_c), che determina il raggiungimento delle condizioni di instabilità del blocco. L'integrazione del moto sismico (accelerogrammi ricavati alla superficie a valle dell'analisi di risposta sismica locale 2D) negli intervalli di tempo in cui l'accelerazione risulta superiore a quella critica (e comunque in tutti gli intervalli in cui la velocità relativa risulti maggiore di zero), permette di calcolare gli spostamenti permanenti.

Il metodo trascura l'effetto dell'accelerazione verticale indotta dal terremoto: la letteratura, riguardo a questo tema, riporta teorie contrastanti, che dimostrano a volte la modesta importanza di tale componente (ad es. Blake et al., 2002) o, al contrario, la necessità di tenerla in debito conto, specialmente in occasione di forti terremoti (ad es. Yang e Yan, 2009; Tsai e Liu, 2017).

L'accelerazione critica (a_{cr}) può essere valutata attraverso il metodo pseudo-statico, ricercando il valore del coefficiente sismico orizzontale associato al fattore di sicurezza globale pari a 1,2 (k_{h_cr}) (Bramerini et al., 2017) (analisi pseudo-statica inversa).

Per una stima approssimata dell'accelerazione critica (a_{cr}), Newmark (1965) ha proposto la relazione:

$$a_{cr} = (FS-1)g \sin \alpha$$

dove "FS" è il fattore di sicurezza statico, "g" è l'accelerazione di gravità ed " α " è l'angolo di spinta, ovvero l'angolo tra l'orizzontale e la direzione in cui il baricentro della massa instabile inizia il suo movimento.

E' stato quindi costruito il modello del pendio (Figura 58) sulla base dei profili di Vs ottenuti dalle indagini geofisiche, dei risultati dell'analisi di risposta sismica locale 1D e della stratigrafia del sondaggio geognostico.

La stratigrafia è composta da uno strato superficiale di spessore variabile da circa 4/5 m, nel settore sorgente, a 10–15 m nel settore di transito/accumulo, corrispondente allo spessore entro il quale, da analisi di risposta sismica locale 1D e 2D, si sono registrati i massimi valori di deformazione co–sismica. Tale spessore è quello che caratterizza, superficialmente ed in modo omogeneo, l'intera area di studio e le zone limitrofe indagate dalle prove geofisiche (sia d'archivio che eseguite per questo studio), probabilmente coincidente con la coltre detritica caratterizzata da scarso addensamento.

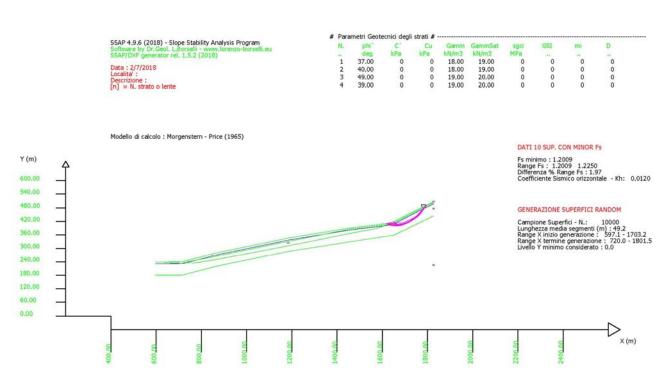


Figura 58 – Visualizzazione delle 10 superfici con FS più basso (in fucsia), compresa quella con FS minimo (= 1,2, in rosso, anche nell'ingrandimento). Da analisi di stabilità pseudo-statica eseguita con Khc = 0,012. Si veda l'Allegato 6 per tutti i dettagli ed il log dell'analisi. Elaborazione effettuata col codice SSAP (rel. 4.9.6 – 2018), http://www.ssap.eu.

Un secondo strato è stato selezionato tra il primo e circa 35 m, caratterizzato da un leggero incremento della velocità delle onde S rispetto allo strato superficiale e presente, in forma di lente, tra la base della scarpata principale, a monte, ed il piede di frana.

A seguire, fino a circa 60 m di profondità, è stato inserito un terzo strato, rappresentativo dello spessore di terreno che separa gli strati più superficiali con il contatto col presunto bedrock sismico.

Per quanto riguarda i parametri geotecnici, trattandosi di un deposito di frana, sono stati selezionati quelli residui, ovvero φ residuo e c'=0. Il φ residuo è stato calcolato, per i primi due strati, dai valori di N_{spt} ricavati in corrispondenza del sondaggio S1-PGN di Figura 33 (Allegato 1). Il valore ricavato dagli N_{spt} è quello di φ ', pertanto, quest'ultimo è stato trasformato in $\varphi_{\text{c.v.}}$ (a grandi deformazioni o "a volume costante"), che può essere assimilato al φ residuo (in realtà, il valore del $\varphi_{\text{c.v.}}$ è leggermente superiore a quello del φ residuo). Il valore di φ ' per gli altri due strati (non in frana) è stato ricavato dalla formula di Uzielli et al. (2013) che mette in relazione l'angolo d'attrito di picco con la velocità delle onde s:

$$\phi'_{min.} = 3.9 V_{s1}^{0.44}$$

$$\phi'_{max.} = (3.9 V_{s1}^{0.44}) - 6.2$$

dove V_{s1} è la velocità delle onde sismiche di taglio normalizzata per la pressione litostatica. I valori NON sono stati trasformati in $\phi_{c.v.}$

Primo strato (0-15 m):

$$\varphi$$
' (da N_{spt}) = 42° $\varphi_{c.v.} = 37$ °

Secondo strato (15-35 m):

$$\phi' \; (da \; N_{spt}) = 44^\circ \qquad \qquad \phi_{c.v.} = 39^\circ$$

Terzo strato (35-60 m)

$$\varphi'_{min.} = 40^{\circ}$$
 (da Uzielli et al., 2013)

$$\phi$$
'max. = 45° (da Uzielli et al., 2013)

Quarto strato (> 60 m)

$$\phi$$
'min. = 49° (da Uzielli et al., 2013)

$$\varphi'_{max.} = 54^{\circ}$$
 (da Uzielli et al., 2013)

Inseguendo sempre la massima cautela, si è deciso di assegnare ai primi due strati, più superficiali, il valore di φ ' e, quindi, di $\varphi_{c.v.}$, da N_{spt} . Per gli altri due strati sono stati selezionati i valori minimi ricavati dalle formule di Uzielli et al. (2013).

Strato	φ'	Фс.v.
1	42°	37°
2	44°	39
3	40°	1
4	49	1

I valori di peso di volume per tutti gli strati, non avendo a disposizione risultati di prove di laboratorio su campioni di terreno, sono stati calcolati attraverso la formula di Keceli (2012):

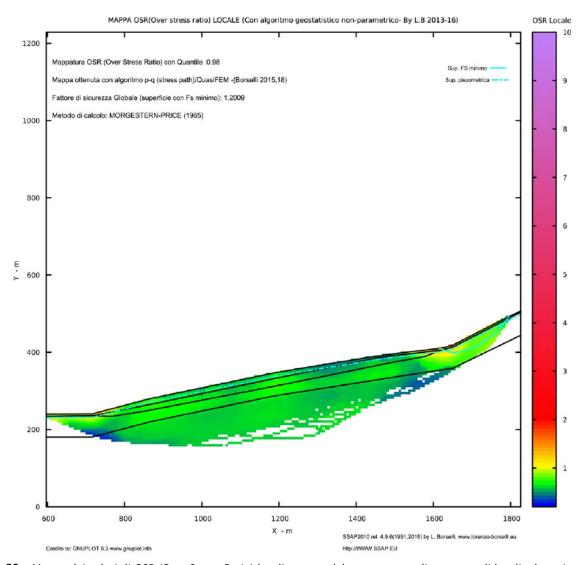
$$\gamma = 4.3 V_s^{0.25}$$

Strato	γ (kN/m³)
1	18
2	18
3	19
4	19

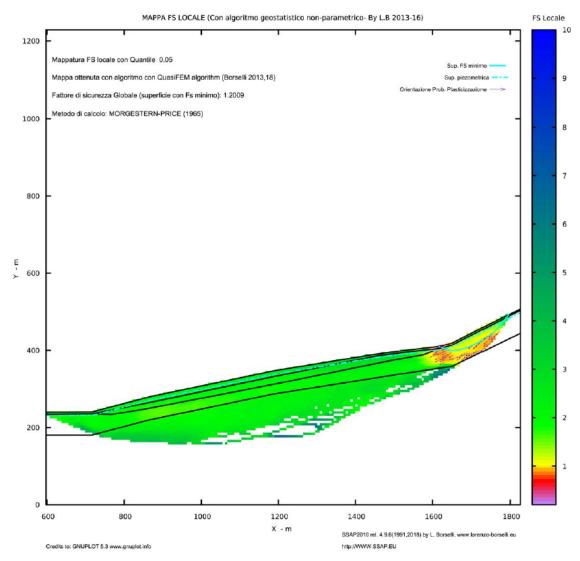
Il livello della falda è stato posto alla profondità di circa 9.5 m dal piano campagna ed assunto costante lungo l'intero profilo di frana, come da rilevamento del livello di falda eseguito in occasione dell'esecuzione del sondaggio S1-PGN.

I risultati della verifica in condizioni pseudo-statiche sono riportati nella seguente tabella.

K _{hc}	FS min.	acg
0,01	1,27	0,098
0,011	1,23	0,1
0,012	1,2	0,11
0,015	1,2	0,14


Tabella 6 – Risultati analisi pseudo-statica inversa – Valori del fattore di sicurezza minimo da analisi di stabilità in condizioni pseudo-statiche e relativi valori del coefficiente sismico orizzontale, critico (k_{hc}) e dell'accelerazione critica (a_{cg}). In rosso i valori relativi alla condizione di stabilità critica in condizioni sismiche.

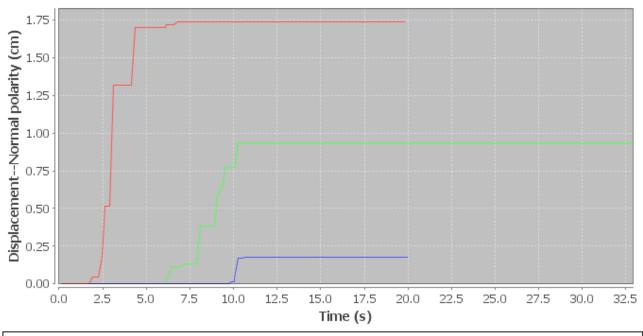
Come si può notare dalla tabella, la soglia oltre la quale le verifiche restituiscono valori di FS inferiori ad 1,2 può essere identificata con il k_{hc} pari a 0,012 e con l'accelerazione critica pari a 0,11g. In Figura 58 (e in modo più dettagliato in Allegato 6) viene mostrato il risultato della verifica di stabilità eseguita con $k_{hc}=0,012$.


Sempre in Figura 58 si può vedere come la superficie ad FS minimo interessi lo strato più superficiale ed il terzo strato, nel segmento del profilo di frana che va da quota 483 m (poco a valle dell'orlo di scarpata della frana storica del 1790) a quota 412 m, ovvero alla base della scarpata di frana stessa.

Valori di OSR compresi tra 1 e 2 (Figura 59) si concentrano in particolar modo sulla porzione più superficiale della scarpata della frana storica del 1790 ed alla base della stessa, nel settore di valle (e poco oltre lo stesso) del volume di terreno racchiuso dalla superficie a SF minimo, ovvero in prossimità del cambio di pendenza del pendio che si ha a monte del campo da calcio: qui, gli stress medi locali possono eccedere le condizioni locali di resistenza (OSR >1), rendendo possibile l'innesco di fenomeni di rottura progressiva.

La mappa che mostra il variare dell'FS nello spazio considerato (Figura 60) pone in evidenza le zone con condizioni localmente critiche e di probabile <u>plasticizzazione</u> (frecce viola che indicano la direzione di plasticizzazione locale), subito al di sotto dell'intero volume mobilizzabile.

Figura 59 – Mappa dei valori di OSR (Over Stress Ratio) locali, ovvero del rapporto tra gli stress medi locali e la resistenza al taglio. Elaborazione effettuata col codice SSAP (rel. 4.9.6 – 2018), http://www.ssap.eu. Allegato 6.


Figura 60 – Mappa dei valori di FS locali e dei punti ove sono attesi, con maggiore probabilità, fenomeni di plasticizzazione. Elaborazione effettuata col codice SSAP (rel. 4.9.6 – 2018), http://www.ssap.eu. Allegato 6.

In base al metodo di Newmark (1965), i 3 input sismici verranno quindi integrati per tutti i valori di accelerazione superiori a quella critica individuata, ovvero 0,11g. Il metodo è stato applicato nel luogo "Saltino 2" in cui è stata effettuata l'analisi di risposta sismica locale 2D e, allo stesso tempo, ricadente all'interno del volume di terreno mobilizzabile. La verifica alla Newmark è stata effettuata attraverso il codice di calcolo SLAMMER (Jibson et al., 2013), scritto in Java (https://pubs.usgs.gov/tm/12b1/), che ha calcolato **spostamenti permanenti medi variabili da 0,35 a 1,22 cm,** a seconda dell'accelerogramma utilizzato (Tabella 7 e Figura 61). Il valore mediano dello spostamento complessivo è pari a **0,93±0,36 cm**.

Earthquake	Record	Rigid block (cm)Normal	Rigid block (cm)Inverse	Rigid block (cm)Average
Saltino MS3	Saltino2Acc1.txt	1.74	0.69	1.22
Saltino MS3	Saltino2Acc2.txt	0.18	0.52	0.35
Saltino MS3	Saltino2Acc3.txt	0.93	0.92	0.93
	Mean value	0.95	0.71	0.83
	Median value	0.93	0.69	0.93
	Standard deviation	 0.64	0.17	0.36

Tabella 7 – Tabella riassuntiva dei valori di spostamento co-sismico calcolati col metodo del blocco rigido di Newmark, attraverso il codice di calcolo SLAMMER, per ognuno dei tre accelerogrammi restituiti in superficie a valle dell'analisi di risposta simica locale 2D. Normal: è relativo alla porzione delle Y positive della serie temporale dell'accelerazione; Inverse: è relativo alla porzione delle Y negative della serie temporale dell'accelerazione. Il punto di verifica degli spostamenti è "Saltino 2", ovvero il luogo di verifica della risposta sismica locale 2D ricadente all'interno del volume di terreno mobilizzabile.

Rigid-Block Displacement versus Time

— Saltino MS3 - Saltino2Acc1.txt - Rigid block, Normal — Saltino MS3 - Saltino2Acc2.txt - Rigid block, Normal — Saltino MS3 - Saltino2Acc3.txt - Rigid block, Normal

Figura 61 - Grafico degli spostamenti co-sismici cumulati per i tre accelerogrammi, per il punto di misura interno al volume di terreno mobilizzabile.

Le linee guida per l'analisi e la mitigazione del rischio da frana in California (Blake et al., 2002) indicano uno **spostamento ammissibile** pari a:

- 5 cm per superfici di scorrimento che coinvolgono manufatti rigidi
- 15 cm per cinematismi di collasso che si sviluppano in terreni con curve sforzideformazioni di tipo incrudente e non interagiscono con manufatti esistenti.

Nel caso di terreni con curve sforzi-deformazioni di tipo rammollente, 15 cm è ragionevole se Kc è calcolato utilizzando le caratteristiche di resistenza di post-picco o residua, mentre è opportuno assumere $S_{amm} = 5$ cm se Kc è calcolato con i parametri di picco della resistenza al taglio.

Relativamente agli spostamenti in pendii naturali, Idriss (1985) ha stimato le seguenti classi di danno:

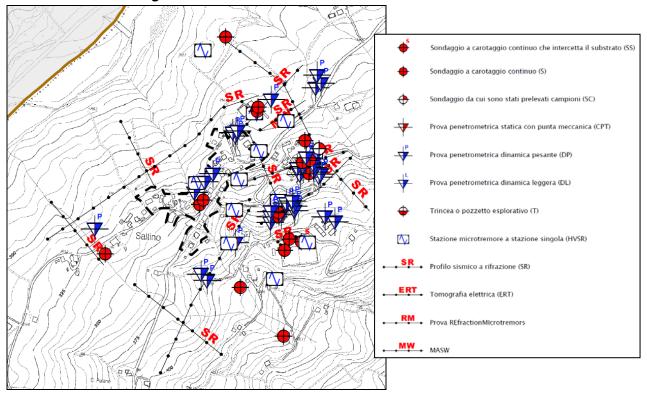
Livello di danno	Spostamento (cm)
Minimo	< 3
Moderato	3-15
Molto alto	15-30
Vasto/severo	30-90
Catastrofico	90-300

Lo spostamento permanente ricavato dall'analisi eseguita per questo studio risulta quindi **ammissibile** e capace di produrre un **livello di danno minimo**.

In **campo statico**, la verifica di stabilità del pendio in esame ha fornito un fattore di sicurezza minimo pari a **1,26**, individuando, come in campo pseudo-statico, le 10 superfici di scivolamento a FS minimo nel settore di scarpata del corpo di frana storico del 1790 (si vedano il tabulato di verifica e la rappresentazione grafica in Allegato 6). Questo avvalora l'ipotesi che il volume del corpo di frana, mobilizzabile in campo pseudo-statico, possa essere considerato stabile in campo statico, al netto dei fenomeni di scivolamento epidermici evidenti dal rilevamento geomorfologico e dai dati d'archivio del dissesto, che interessano spessori prossimi ad 1 m in corrispondenza dei settori della scarpata principale con le maggiori pendenze.

In condizioni dinamiche, al superamento della soglia di accelerazione critica di 0,11g, il medesimo volume racchiuso dalla superficie a FS minimo in campo statico risulterebbe instabile, con spostamenti co-sismici massimi pari a circa 1,7 cm, mentre le restanti porzioni dell'intero corpo di frana analizzato continuerebbero a rimanere stabili. Tutto questo a parità di condizioni geotecniche, morfologiche e idrogeologiche identificate in questo studio.

9. ELABORATI CARTOGRAFICI


Di seguito verranno descritti brevemente i contenuti delle cartografie prodotte per questo terzo livello di approfondimento della microzonazione sismica di Prignano sulla Secchia, ponendo in evidenza le differenze rispetto agli elaborati dei precedenti livelli di approfondimento, relativamente all'area su cui sono stati condotti i presenti studi.

• La carta delle indagini: in essa vengono rappresentate le ubicazioni e le tipologie delle indagini di nuova esecuzione, realizzate appositamente per condurre gli studi di terzo

livello, insieme alle indagini pregresse, sia precedenti la microzonazione di secondo livello, sia eseguite in occasione della stessa.

- La carta delle Vs: in essa vengono rappresentati i valori di Vs (Vs_H e/o Vs₃₀) derivati dalle nuove indagini geofisiche eseguite per questo studio, integrati con i valori dello stesso parametro già presenti nel precedente livello di microzonazione (L2).
- La carta delle frequenze: in essa vengono rappresentati i valori della frequenza fondamentale di vibrazione del terreno derivati dalle nuove indagini geofisiche eseguite per questo studio, integrati con i valori dello stesso parametro già presenti nel precedente livello di microzonazione (L2).
- La carta delle MOPS: in base ai risultati delle indagini ed analisi del livello 3 di microzonazione, la carta delle MOPS del livello 2 è stata modificata per la sola area oggetto di approfondimento nel terzo livello; per le restanti aree è stata aggiornata in base ai nuovi standard di rappresentazione (versione 4.0b).
- La carta di microzonazione sismica (MS_0203): identifica le aree stabili suscettibili di amplificazioni locali, le zone di attenzione per instabilità (Livello 2) e le zone suscettibili di instabilità (Livello 3), quest'ultime con fattori di amplificazione calcolati da analisi di risposta sismica locale bi-dimensionali e spostamenti co-sismici calcolati con modello numerico in campo pseudo-statico.

9.1. Carta delle indagini

Figura 62 – Stralcio della Tavola di MS3 "Carta delle indagini" in cui è rappresentata l'rea d'indagine per le analisi di MS3 condotte in questo studio, insieme alle indagini geognostiche e geofisiche d'archivio e di nuova esecuzione.

La carta delle indagini mostra la distribuzione spaziale di tutte le indagini geognostiche e geofisiche d'archivio e di nuova esecuzione per questo approfondimento di MS3. In sostanza vengono riprese tutte le indagini contenute nell'omonima carta di MS2 aggiungendovi, per la sola area di approfondimento MS3 (Figura 62) le nuove indagini eseguite.

9.2. Carta delle Vs

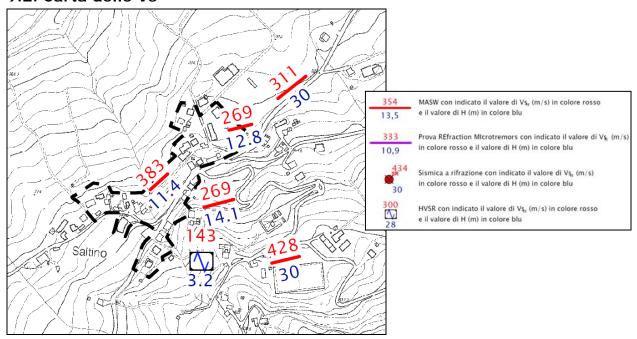
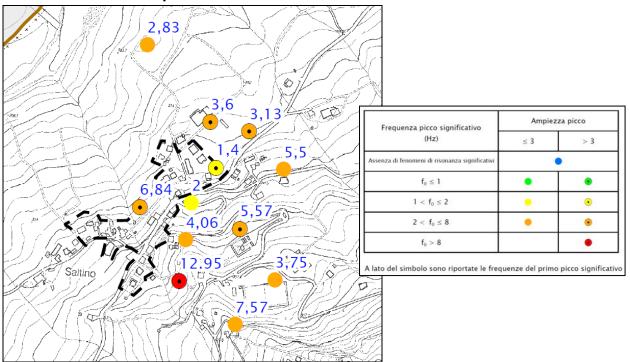



Figura 63 – Stralcio della Tavola di MS3 "Carta delle Vs" in cui è rappresentata l'rea d'indagine per le analisi di MS3 condotte in questo studio, insieme ai fattori di amplificazione calcolati sulla base delle nuove indagini geofisiche e di quelle d'archivio.

La carta delle Vs mostra la distribuzione spaziale di tutti i valori di Vs_H ricavati sia dalle indagini d'archivio (già contenute nella carta di microzonazione MS2) che da quelle di nuova esecuzione per questo approfondimento di MS3. In sostanza vengono riprese tutte le Vs contenute nell'omonima carta di MS2 aggiungendovi, per la sola area di approfondimento MS3 (Figura 63) le nuove Vs ricavate dalle nuove indagini eseguite.

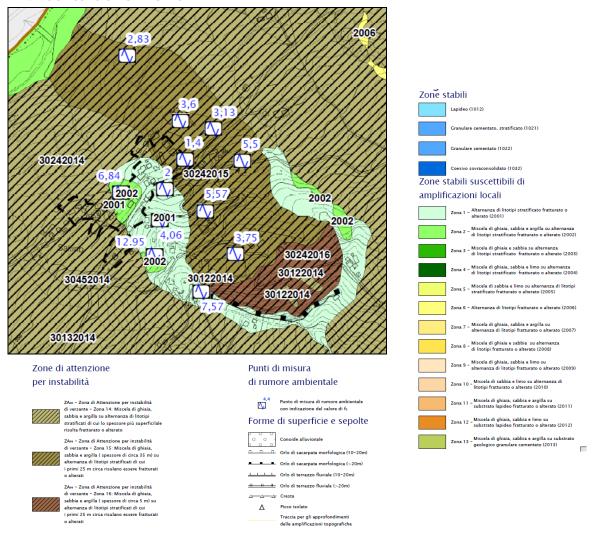
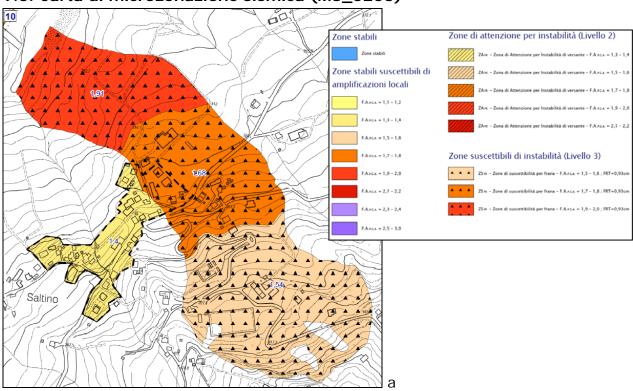
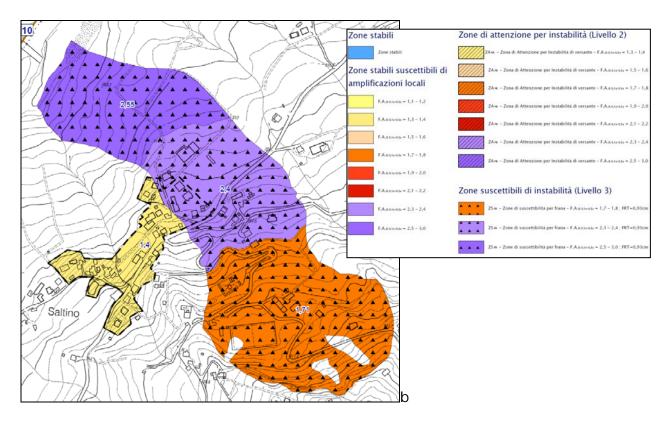

9.3. Carta delle frequenze

Figura 64 – Stralcio della Tavola di MS3 "Carta delle frequenze" in cui è rappresentata l'rea d'indagine per le analisi di MS3 condotte in questo studio, insieme ai valori di frequenza fondamentale di vibrazione del terreno calcolati sulla base delle nuove indagini geofisiche e di quelle d'archivio.

La carta delle frequenze mostra la distribuzione spaziale di tutti i valori della frequenza fondamentale di vibrazione del terreno, ricavati sia dalle indagini d'archivio (già contenute nella carta di microzonazione MS2) che da quelle di nuova esecuzione per questo approfondimento di MS3. In sostanza vengono riprese tutte le frequenze contenute nell'omonima carta di MS2 aggiungendovi, per la sola area di approfondimento MS3 (Figura 64) le nuove frequenze ricavate dalle nuove indagini eseguite. Come si può vedere, i valori di frequenza vengono distinti all'interno di 5 classi, a loro volta suddivise in base all'ampiezza del picco di risonanza: <= 3 o >3.

9.4. Carta delle MOPS




Figura 65 – Stralcio della Tavola di MS1 "Carta delle microzone omogenee in prospettiva sismica" (MOPS) in cui è rappresentata l'rea d'indagine per le analisi di MS3 condotte in questo studio. La carta è stata rielaborata sulla base dei più recenti standard di rappresentazione (4.0b) e a valle dei risultati delle analisi di MS3 condotte per questo studio.

La carta delle MOPS, elaborata nel primo livello di approfondimento, è stata rielaborata sulla base dei più recenti standard di rappresentazione cartografica (versione 4.0b, 2015). Rispetto alla rappresentazione di I livello le frane sono state definite come "Zone di attenzione per instabilità" e suddivise in base alla specifica stratigrafia identificata, in particolare, per l'area di MS3, a seguito dell'esecuzione del sondaggio a carotaggio continuo.

Inoltre, considerando che le descrizioni litologiche standardizzate sono mutate nel passaggio dagli standard con cui è stata elaborata la carta delle MOPS nel I livello agli standard 4.0b, per l'intero territorio comunale sono state riviste le classificazioni litologiche e, quindi, tutte le descrizioni delle zone stabili suscettibili di amplificazioni locali.

9.5. Carta di microzonazione sismica (MS_0203)

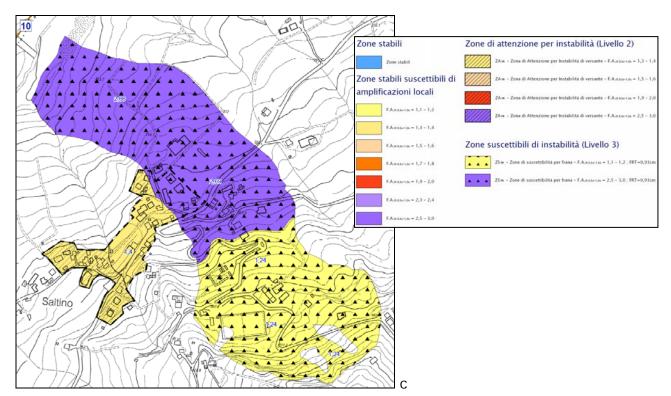


Figura 66 – Stralcio delle 3 Tavole di MS_0203 "Carta di microzonazione sismica": a) fattori di amplificazione della PGA; b) fattori di amplificazione dell'Intensità di Housner in pseudo-velocità nell'intervallo d'integrazione compreso tra i periodi 0,1-0,5 s; c) fattori di amplificazione dell'Intensità di Housner in pseudo-velocità nell'intervallo d'integrazione compreso tra i periodi 0,5-1,0 s.

Le 3 carte di MS_0203 sono state elaborate a partire dalle omonime carte di microzonazione di Il livello, riclassificando tutte le aree ivi rappresentate in base ai più recenti standard di rappresentazione (versione 4.0b) e in base ai più recenti criteri regionali di microzonazione esposti nella DGR2193/2015 della Regione Emilia-Romagna. Rispetto alla precedente cartografia di secondo livello sono state evidenziate anche le aree in frana ricadenti all'interno del <u>solo territorio urbanizzato</u>. All'interno del poligono giallo di Figura 66 (area sorgente della frana studiata) sono presenti poligoni bianchi: essi coincidono con frane superficiali che non hanno relazione con la più ampia frana studiata; ricadendo al di fuori del territorio urbanizzato, come conseguenza non sono state rappresentate in base alle classi previste per questa tavola. Le zone suscettibili di instabilità identificate nel secondo livello sono state suddivise in "Zone di attenzione per instabilità" ed in "Zone suscettibili di instabilità"; quest'ultime sono quelle indagate dai presenti studi di terzo livello, differenziate in base al fattore di amplificazione (Fa) – calcolato con analisi di risposta sismica locale bi-dimensionale – ed in base allo spostamento co-sismico (FRT) – calcolato con analisi pseudo-statica.

10. CONFRONTO CON LA DISTRIBUZIONE DEI DANNI DEGLI EVENTI PASSATI

Non si hanno dati relativi a danni sul territorio comunale provocati da eventi sismici avvenuti in passato.

11. BIBLIOGRAFIA

- Barbero, M., Bonini, M., Borri Brunetto, M., 2006. Analisi numeriche della stabilità di un versante in bimrock, in: Incontro Annuale Dei Ricercatori Di Geotecnica 2006 IARG 2006. Pisa.
- Bettelli, G., Bonazzi, U., Fazzini, P., Gasperi, G., Gelmini, R., Panini, F., 1989a. Nota illustrativa alla Carta geologica dell'Appennino modenese e zone limitrofe. Mem. Soc. Geol. It. 39, 487-498.
- Bettelli, G., Bonazzi, U., Fazzini, P., Panini, F., 1989b. Schema introduttivo alla geologia delle Epiliguridi dell'Appennino modenese e delle aree limitrofe. Mem. Soc. Geol. It. 39, 215-246.
- Bettelli, G., Bonazzi, U., Panini, F., 1989c. Schema introduttivo alla geologia delle Liguridi dell'Appennino modenese e delle aree limitrofe. Mem. Soc. Geol. It. 39, 91-126.
- Bettelli, G., Capitani, M., Panini, F., 1996. Origine della struttura a "blocchi in pelite" e dell'estensione parallela alla stratificazione nelle formazioni smembrate liguri del Supergruppo del Baganza affioranti nel settore sudorientale dell'Appennino emiliano. Accad. Naz. Sci. Lett. Arti di Modena, Collana di Stud. 15, 261-298.
- Bettelli, G., Panini, F., 1992. Nota illustrativa ad una sezione geologica attraverso l'Appennino modenese. Stud. Geol. Camerti Vol. Spec., 65-74.
- Bettelli, G., Panini, F., Pizziolo, M., 2002. Note illustrative della Carta Geologica d'Italia alla scala 1:50.000. Foglio n. 236 Pavullo nel Frignano. Firenze.
- Boccaletti, M., Corti, G., Martelli, L., 2011. Recent and active tectonics of the external zone of the Northern Apennines (Italy). Int J Earth Sci (Geol Rundsch) 100, 1331-1348.
- Bonini, M., 2007. Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: Examples from the external northern Apennines (Emilia-Romagna, Italy). J. Geophys. Res. Solid Earth 112, DOI: 10.1029/2006JB004859.
- Bonini, M., Tanini, C., 2009. Tectonics and quaternary evolution of the Northern Apennines watershed area (upper course of Arno and Tiber rivers, Italy). Geol. J. 44, 2-29.
- Brunamonte, F., 2003. Ricerca storica sulle frane nella Provincia di Modena. Regione Emilia-Romagna. Torino.
- Capitani, M., Bertacchini, M., 1997. Aspetti geologici, in: Modena, P. di (Ed.), 2° Relazione Sullo Stato Dell'ambiente Nella Provincia Di Modena. Modena, pp. 29–34.
- Chicchi, S., Plesi, G., 1991. Sovrascorrimenti e strutture associate dell'alto Appennino emiliano fra il Passo del Lagastrello e il M. Cimone. Stud. Geol. Camerti Vol. speci, 99-108.

Comune di Prignano sulla Secchia – Provincia di Modena Microzonazione Sismica – 3° Livello di Approfondimento Relazione Illustrativa

- Chicchi, S., Plesi, G., 1992. Il Complesso di M. Modino nell'alto Appennino emiliano (tra il Passo del Lagastrello e il M. Cimone) e i suoi rapporti con la Falda toscana, l'Unità di Canetoloe le Liguridi. Mem. Descr. Cart. Geol. d'It. 46, 139-163.
- Chicchi, S., Plesi, G., 1995. La struttura della finestra di Gazzano (Val Dolo, Appennino reggiano-modenese). Accad. Naz. delle Sci. Scr. e Doc. 14, 195-227.
- Daniele, G., Plesi, G., 2000. The Ligurian Helminthoid flysch units of the Emilian Apennines: stratigraphic and petrographic features, paleogeographic restoration and structural evolution. Geodin. Acta 13, 1–21.
- De Nardo, M.T., Iaccarino, S., Martelli, L., Papani, G., Tellini, C., Torelli, L., Vernia, L., 1991. Osservazioni sull'evoluzione del bacino satellite epiligure Vetto-Carpineti-Canossa (Appennino Settentrionale). Mem. Descr. Cart. Geol. d'It. XLVI, 209-220.
- Delibera dell'Assemblea Legislativa Regione Emilia-Romagna n°112, 2007. Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna par la pianificazione territoriale e urbanistica.
- Garberi, M.L., A., P., Pizziolo, M., 1999. I numeri sulle frane. Grafiche Damiani, Bologna.
- Gruppo di lavoro MS, 2008. Indirizzi e criteri per la microzonazione sismica. Conf. delle Reg. e delle Procince Auton. Dip. della Prot. Civile, Roma 3 vol.
- Leuratti, E., Lucente, C.C., Medda, E., Manzi, V., Corsini, A., Tosatti, G., Ronchetti, F., Guerra, M., 2007. Primi interventi di consolidamento sulle frane dei Boschi di Valoria, di Tolara e Lezza Nuova (Val Dolo e Val Dragone, Appennino modenese). G. di Geol. Appl. 7, 17-30.
- Mancin, N., Martelli, L., Barbieri, C., 2006. Foraminiferal biostratigraphy and paleobathymetric constraints in geohistory analysis: the example of the Epiligurian succession of the Secchia Valley (Northern Apennines, Mid Eocene–Late Miocene). Boll. Soc. Geol. It. 125, 163-186.
- Martini, G., Plesi, G., 1988. Scaglie tettoniche divelte dal complesso di M. Modino e trascinate alla base delle unità subligure e ligure: gli esempi del M. Ventasso e del M. Cisa (Appennino reggiano). Boll. Soc. Geol. It. 107, 171-191.
- Medley, E., 1999. Systematic characterization of melange bimrocks and other chaotic soil/rock mixtures. Felsbau 17, 152-162.
- Medley, E., 2001. Engineering Geological Characterization of Brittle Faults and Classification of Fault Rocks. Felsbau 19, 13–19.
- Mochi, E., Plesi, G., Villa, G., 1996. Biostratigrafia a nannofossili calcarei della parte basale della successione del M. Modino (nell'area dei Fogli 234 e 235) ed evoluzione strutturale dell'unità omonima. Stud. Geol. Camerti 13, 39–73.

Comune di Prignano sulla Secchia – Provincia di Modena Microzonazione Sismica – 3° Livello di Approfondimento Relazione Illustrativa

- Plesi, G., 2002. Note illustrative della Carta Geologica d'Italia alla scala 1:50.000. Foglio n. 235 Pievepelago. Regione Emilia-Romagna-S.EL.CA, Firenze.
- Reutter, K.J., 1969. La geologia dell'Alto Appennino modenese tra Civago e Fanano econsiderazioni geotettoniche sull'Unità di M. Modino M. Cervarola. L'Ateneo Parm. Acta Nat. 5, 1-88.
- Soldati, M., Tosatti, G., 1993. Case histories of lake-forming landslides in the Dragone Valley (Northern Apennines), in: Proc. 7th Int. Conf. & Field Whorkshop on Landslides In Cech and Slovak Republics. pp. 287-292.
- Tellini, C., 2013. Pericolosità e suscettibilità da frana in Emilia-Romagna. Geol. dell'Emilia-Romagna 47, 7-13.

ALLEGATO 1

Sondaggio a carotaggio continuo (eseguito per questo studio)

		COMMITTENT	E: Dott. Geol. Valeriano Franchi			SOND.N°: S.3	PROF.(m): 27.30
SOGE(CANTIERE: Sa	altino - Prignano sulla Secchia (MO))		QUOTA (m): p.d.c.	
Via S. Potito n. 43 - 48022	INDAGINI GEOGNOSTICHE ED AMBIENTALI Via S. Potitio n. 43 - 48022 S. Potito di LUGO (RA) Tel. 054522042 - Fax 054534443 - E-mail: sogeo@sogeo-srl.com		PERFORATRICE: CMV MK900 D1			LATITUDINE (°):	
	frastrutture e Trasporti - Settore C	METODO PER	FORAZ.: Carotaggio continuo			LONGITUDINE (°):	
RIVESTIMENTO: Ø 127 mi	m	ATTREZZO PE	ERFORAZ.: Carotiere semplice e do	ppio Ø 101 mm	(*1)	DATA INIZ-FINE: 05/	09/2016-06/09/2016
PIEZOMETRO:		•				SCALA: 1:100	
RIF PREV Nº 146-16	CERTIFICATO Nº: C16-	.070-3	BAPPORTO Nº ·	DATA DI	EMISSIONE: 16/09/2016	PAGINA Nº· 1 di 2	

Subio: ghialetto pelitico, a spigoli vivi, in matrice sabbiose rimosa Clast pelitici et arrenaeia, a appigoli vivi, in matrice sabbiosa el limo- argillosa Aromaria quarcasa, priva di fratiure, con una vanetura calcitica e con conce di cosiductore matroli Limo argilloso sabbiosa, di aspetto pseudo-scaglioso, con classi lagidisi sparii che aumentare in procentuale con ia profondita Limo argilloso-sabbiosa, di aspetto pseudo-scaglioso, con classi lagidisi sparii che aumentare in protectica con ia profondita Limo argilloso-sabbiosa, di aspetto pseudo-scaglioso, con classi a- procentuale con ia spigoli vivi di Omaz 4-5 cm Limo argilloso-sabbiosa, di aspetto pseudo-scaglioso, con classi a- procentuale con ia spigoli vivi di Omaz 4-5 cm Limo argilloso-sabbiosa, di aspetto pseudo-scaglioso, con classi a- procentuale con in trattico in controle con procenti molto classi Limo argilloso-sabbiosa, di aspetto pseudo-scaglioso, con classi a- procentuale con controle con procenti molto classi arranacci in matrico inno argillosa, sabbiosa Classi arranacci in matrico inno argillosa, sabbiosa Aremaria Classi arranacci in matrico inno argillosa, sabbiosa Aremaria Limo argilloso, debolmente sabbioso, di aspetto pseudo-scaglioso Aremaria compattu priva di rinturo Mitteriale non recuperato Meteriale non recuperato Meteriale non recuperato Meteriale non recuperato Meteriale non recuperato Armaria compattu priva di rinturo Cassi arranacci, a spogoli vivi, di vario diametro, in matrice limo- argilloso, debolmente sabbiosa, molto consaletata Pellos e presenza di uncaso di 0 - 15 cm Argilla inno-abbiosa, molto compatta, di aspetto pseudo-scaglio- aso, con percentuale di classi molto inferiore rispatto ai menti prece- procenti precedenti a Presenza di biocotteri arranacci carranacci carran
■ 27

Lo Sperimentatore

Il Direttore del Laboratorio

606	· · · · · · · · · · · · · · · · · · ·	COMMITTENT	E: Dott. Geol. Valeriano Franchi	SOND.N°: S.3	PROF.(m): 27.30		
SOGEO*.R.L. INDAGINI GEOGNOSTICHE ED AMBIENTALI Via S. Potito n. 43 - 48022 S. Potito di LUGO (RA) Tel. 054522042 - Fax 054534443 - E-mail: sogeo@sogeo-srl.com Concessione Ministero Infrastrutture e Trasporti - Settore C Decr. n. 005754 del 05/07/2010		CANTIERE: Sa	ultino - Prignano sulla Secchia (MO)	QUOTA (m): p.d.c.	QUOTA (m): p.d.c.		
		PERFORATRI	CE: CMV MK900 D1	LATITUDINE (°):	LATITUDINE (°):		
		METODO PER	FORAZ.: Carotaggio continuo	LONGITUDINE (°):	LONGITUDINE (°):		
RIVESTIMENTO: Ø 127 n	nm	ATTREZZO PE	RFORAZ.: Carotiere semplice e dop	DATA INIZ-FINE: 05/	DATA INIZ-FINE: 05/09/2016-06/09/2016		
PIEZOMETRO:							
RIF.PREV.N°: 146-16	CERTIFICATO N°: C16-070-3		RAPPORTO N°:	DATA DI EMISSIONE: 16/09/2016	PAGINA N°: 2 di 2		

Scala 1:100	P.P. I [daN/cm²]	Vane Test [daN/cm²]	Profondita'	Stratigrafia	Descrizione	Campioni	Campioni Rim.	S.P.T. [n. colpi] P.A.	Falda	Pz.Norton	Inclinometro	e Carotaggio	O.O. W. 20 40 60 80
31													

Note:

(*) Da 0.00 a -15.70 m. perforazione mediante carotiere semplice.

Da -15.70 a -27.37 m: perforazione mediante doppio carotiere.

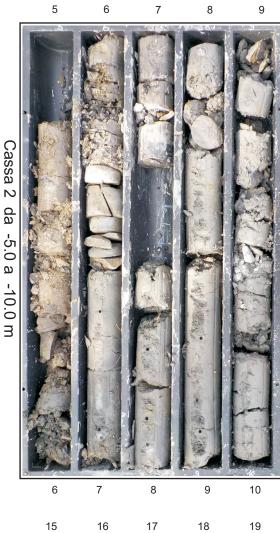
Livello acqua rilevato a -9.75 m dal p.d.c. il giorno 6/9/2016, ore 8 con fondo foro a -19.50 m. Livello acqua rilevato a -9.50 m dal p.d.c. a fine sondaggio con foro libero.

A -16.0~m circa dal p.d.c. venuta di acqua in pressione (+2 m dal p.d.c.). Da -25.0~m circa dal p.d.c. perdita del ricircolo.

Lo Sperimentatore

Il Direttore del Laboratorio

File: MOD_STR Rev-4

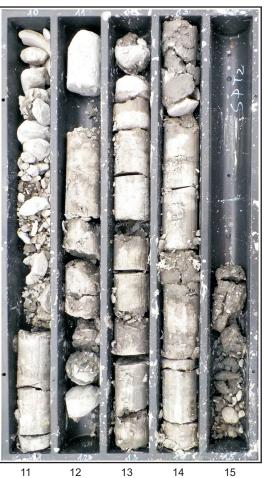

COMMITTENTE: Dott. Geol. Franchi Valeriano

LOCALITA': Prignano sulla Secchia (MO)

ALLEGATO A: C16-070-3

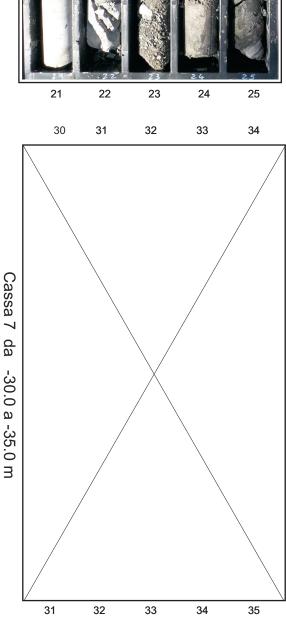
SONDAGGIO N: S.3

DATA: 05/09/2016





Cassa 4 da -15.0 a -20.0 m



Cassa 3 da -10.0 a -15.0 m

Cassa 1 da 0.0 a -5.0 m

Cassa 6 da -25.0 a -30.0 m 28

COMMITTENTE: Dott. Geol. Franchi Valeriano

LOCALITA': Prignano sulla Secchia (MO)

SONDAGGIO N: S.3

DATA: 05/09/2016

SOGEO SRL

Cassa 5 da -20.0 a -25.0 m

20

21

22

23

24

26

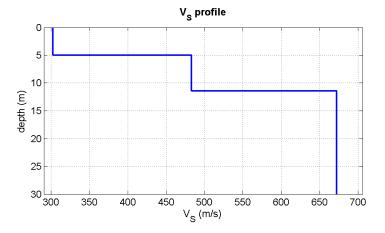
27

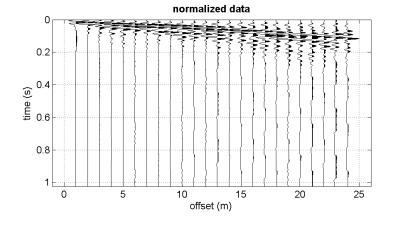
29

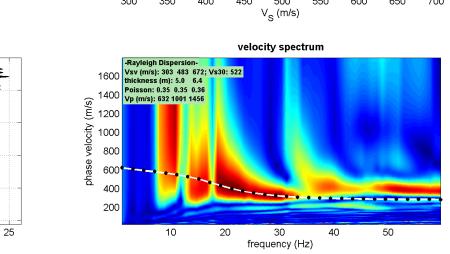
30

ALLEGATO A: C16-070-3

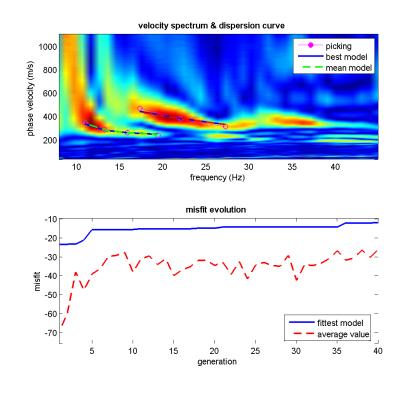
Posizionamento

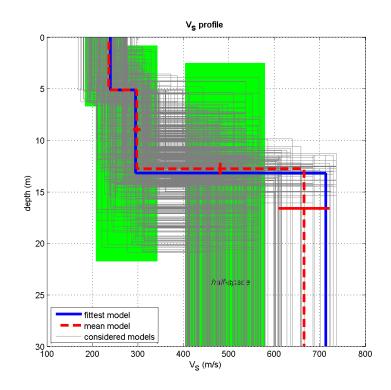

ALLEGATO 2


Indagini MASW


(archivio e nuova esecuzione)

PRIGNANO MASW 22



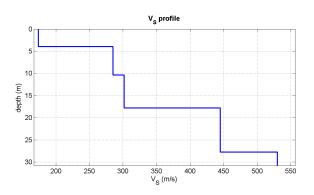


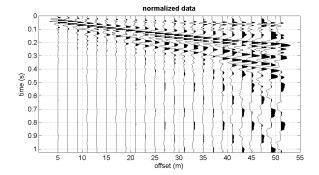
PRIGNANO MASW 23

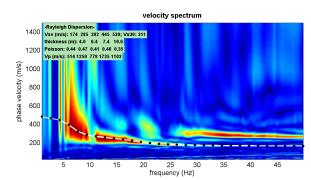
www.winmasw.com

dataset: prign23#2.DAT dispersion curve: pic2prigna23.cdp Vs30 (best model): 414 m/s Vs30 (mean model): 408 m/s

winMASW - Inversion of Surface-Wave Dispersion Curves


Main results


www.winmasw.com


Date: 20 7 2016 Time: 15 45

Dataset: salm1#6.DAT

Mean model

Vs (m/s): 174 285 302 445 530

Thickness (m): 4.0, 6.4, 7.4, 10.0

Density (gr/cm3) (approximate values): 1.89 2.11 1.99 2.19 2.08

Seismic/Dynamic Shear modulus (MPa) (approximate values): 57 171 182 433 584

Estimated static shear modulus (MPa) (approximate values): $0\ 0\ 0\ 0$

Analyzing Phase velocities

Analysis: Rayleigh Waves

Approximate values for Vp and Poisson (please, see manual)

Vp (m/s): 514 1250 778 1735 1103

Poisson: 0.44 0.47 0.41 0.46 0.35

Vs30 (m/s): 311

Pay attention

Soil classification must be perfored by the user.

For Italian Users:

Dalla normativa (modifiche del D.M. 14/09/2005 Norme Tecniche per le Costruzioni, emanate con D.M. Infrastrutture del 14/01/2008, pubblicato su Gazzetta Ufficiale Supplemento ordinario n° 29 del 04/02/2008):

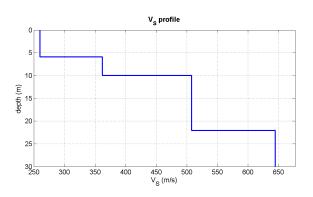
- A Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di VS30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, con spessori superiori a 30 m, caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 360 m/s e 800 m/s (ovvero NSPT30 > 50 nei terreni a grana grossa e cu30> 250 kPa nei terreni a grana fina).
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT30 < 50 nei terreni a grana grossa e 70 < cu30 < 250 kPa nei terreni a grana fina).
- D Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 inferiori a 180 m/s (ovvero NSPT30 < 15 nei terreni a grana grossa e cu30 < 70 kPa nei terreni a grana fina).
- E Terreni dei sottosuoli dei tipi C o D per spessori non superiori a 20 m, posti sul substrato di riferimento (con VS > 800 m/s).
- S1 Depositi di terreni caratterizzati da valori di VS30 inferiori 100 m/s (ovvero 10 < cuS30 < 20 kPa) che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includano almeno 3 m di torba o argille altamente organiche.
- S2 Depositi di terreni suscettibili di liquefazione, di argille sensitive, o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

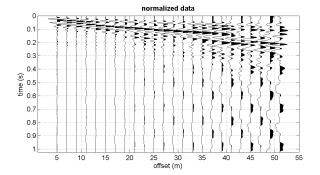
winMASW

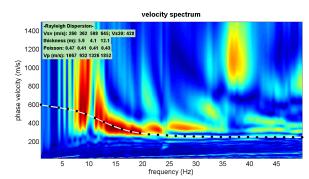
Surface Waves & Beyond www.winmasw.com

winMASW - Inversion of Surface-Wave Dispersion Curves

Main results


www.winmasw.com


Date: 20 7 2016


Time: 15 54

Dataset: salm2#6.DAT

Mean model

Vs (m/s): 260 362 508 645 Thickness (m): 5.9, 4.1, 12.1

Density (gr/cm3) (approximate values): 2.07 2.04 2.12 2.20

Seismic/Dynamic Shear modulus (MPa) (approximate values): 140 267 548 917

Estimated static shear modulus (MPa) (approximate values): $0\ 0\ 0$

Analyzing Phase velocities

Analysis: Rayleigh Waves

Approximate values for Vp and Poisson (please, see manual)

Vp (m/s): 1067 932 1326 1852

Poisson: 0.47 0.41 0.41 0.43

Vs30 (m/s): 428

Pay attention

Soil classification must be perfored by the user.

For Italian Users:

Dalla normativa (modifiche del D.M. 14/09/2005 Norme Tecniche per le Costruzioni, emanate con D.M. Infrastrutture del 14/01/2008, pubblicato su Gazzetta Ufficiale Supplemento ordinario n° 29 del 04/02/2008):

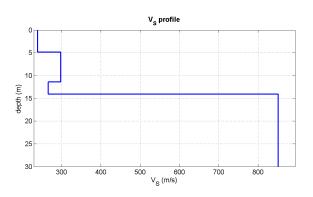
- A Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di VS30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, con spessori superiori a 30 m, caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 360 m/s e 800 m/s (ovvero NSPT30 > 50 nei terreni a grana grossa e cu30> 250 kPa nei terreni a grana fina).
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT30 < 50 nei terreni a grana grossa e 70 < cu30 < 250 kPa nei terreni a grana fina).
- D Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 inferiori a 180 m/s (ovvero NSPT30 < 15 nei terreni a grana grossa e cu30 < 70 kPa nei terreni a grana fina).
- E Terreni dei sottosuoli dei tipi C o D per spessori non superiori a 20 m, posti sul substrato di riferimento (con VS > 800 m/s).
- S1 Depositi di terreni caratterizzati da valori di VS30 inferiori 100 m/s (ovvero 10 < cuS30 < 20 kPa) che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includano almeno 3 m di torba o argille altamente organiche.
- S2 Depositi di terreni suscettibili di liquefazione, di argille sensitive, o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

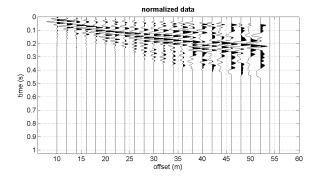
winMASW

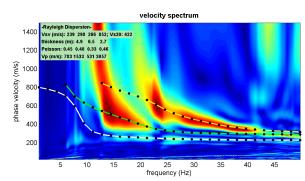
Surface Waves & Beyond www.winmasw.com

winMASW - Inversion of Surface-Wave Dispersion Curves

Main results


www.winmasw.com


Date: 20 7 2016


Time: 16 20

Dataset: salm3b#9.DAT

Mean model

Vs (m/s): 239 298 266 852

Thickness (m): 4.9, 6.5, 2.7

Density (gr/cm3) (approximate values): 1.99 2.16 1.90 2.33

Seismic/Dynamic Shear modulus (MPa) (approximate values): 114 192 134 1688

Estimated static shear modulus (MPa) (approximate values): $0\ 0\ 0$

Analyzing Phase velocities

Analysis: Rayleigh Waves

Approximate values for Vp and Poisson (please, see manual)

Vp (m/s): 783 1533 531 3057

Poisson: 0.45 0.48 0.33 0.46

Vs30 (m/s): 422

Pay attention

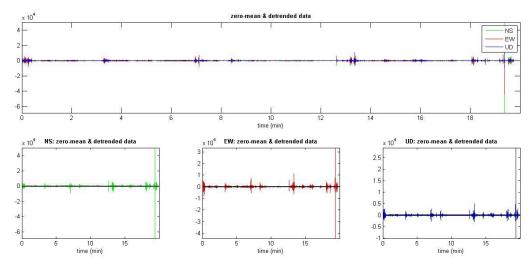
Soil classification must be perfored by the user.

For Italian Users:

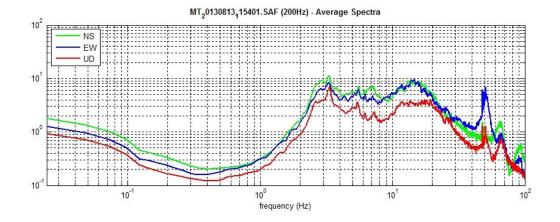
Dalla normativa (modifiche del D.M. 14/09/2005 Norme Tecniche per le Costruzioni, emanate con D.M. Infrastrutture del 14/01/2008, pubblicato su Gazzetta Ufficiale Supplemento ordinario n° 29 del 04/02/2008):

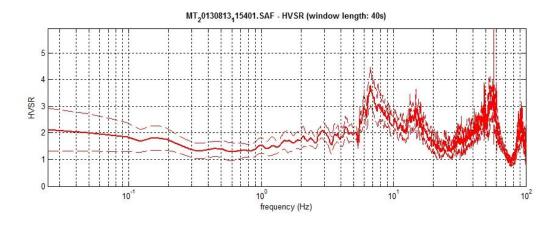
- A Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di VS30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, con spessori superiori a 30 m, caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 360 m/s e 800 m/s (ovvero NSPT30 > 50 nei terreni a grana grossa e cu30> 250 kPa nei terreni a grana fina).
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT30 < 50 nei terreni a grana grossa e 70 < cu30 < 250 kPa nei terreni a grana fina).
- D Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 inferiori a 180 m/s (ovvero NSPT30 < 15 nei terreni a grana grossa e cu30 < 70 kPa nei terreni a grana fina).
- E Terreni dei sottosuoli dei tipi C o D per spessori non superiori a 20 m, posti sul substrato di riferimento (con VS > 800 m/s).
- S1 Depositi di terreni caratterizzati da valori di VS30 inferiori 100 m/s (ovvero 10 < cuS30 < 20 kPa) che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includano almeno 3 m di torba o argille altamente organiche.
- S2 Depositi di terreni suscettibili di liquefazione, di argille sensitive, o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

winMASW


Surface Waves & Beyond www.winmasw.com

ALLEGATO 3


Indagini HVSR


(archivio e nuova esecuzione)

PRIGNANO HVSR 22

- Acquisizione HVSR -

-Spettro HVSR-

SALTINO, HVSR23

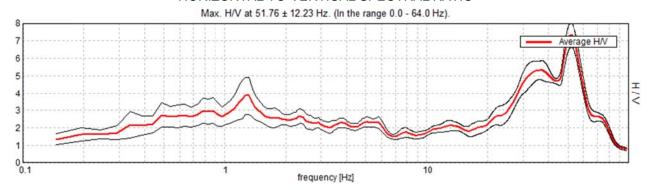
Instrument: EXT- SARA SR04HS

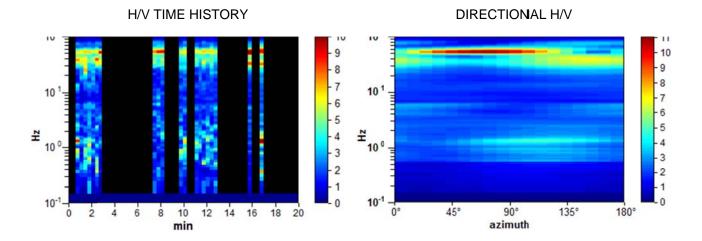
Data format: 16 byte Full scale [mV]: n.a.

Start recording: 13/08/13 12:20:00 End recording: 13/08/13 12:40:00

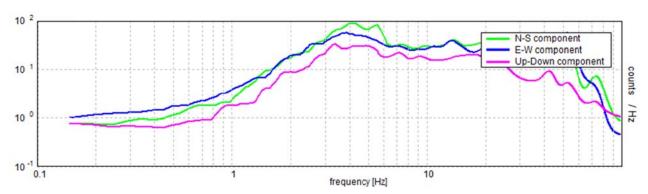
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

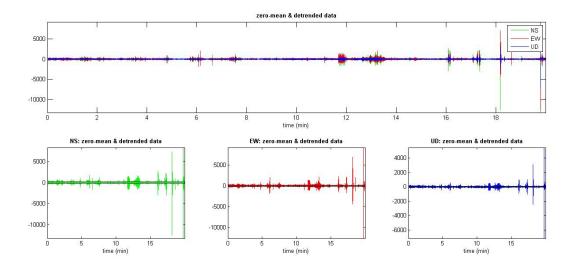

Trace length: 0h20'00". Analyzed 33% trace (manual window selection)


Sampling rate: 200 Hz Window size: 20 s

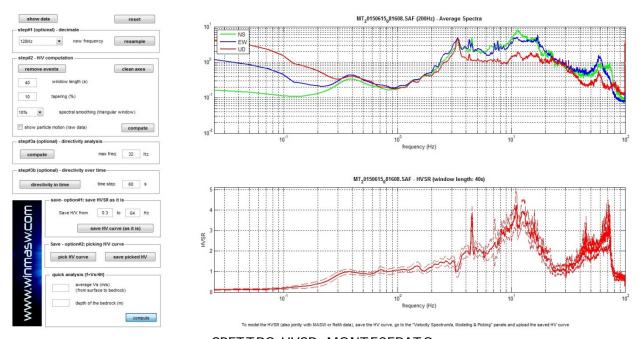
Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 51.76 ± 12.23 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	51.76 > 0.50	OK		
$n_c(f_0) > 200$	20703.1 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1519	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	27.441 Hz	OK		
Exists f $^+$ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	61.621 Hz	OK		
	61.621 Hz 7.33 > 2	OK OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$		_	NO	
Exists f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	7.33 > 2	_	NO NO	

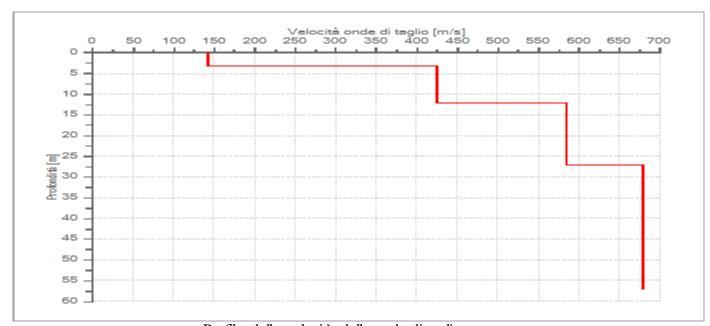

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO

ACQUISIZIONI DI CAMPAGNA MONTECERATO

SPETTRO HVSR- MONTECERATO


Dati riepilogativi:

Numero strati:

Frequenza del picco dell'ellitticità: 12,95 Hz Valore di disadattamento: 0,18 Valore Vs30: 409,17 m/s

Dati della stratigrafia:

Strato	Profondità [m]	Spessore [m]	Peso per Unità di Vol. [kN/m^3]	Coeff. di Poisson	Velocità onde di taglio [m/s]
1	3,2	3,2	19	0,3	143
2	12,2	9	22	0,2	425
3	27,2	15	22	0,2	585
4	57,2	30	22	0,2	679

Profilo delle velocità delle onde di taglio.

SALTINO, 1A

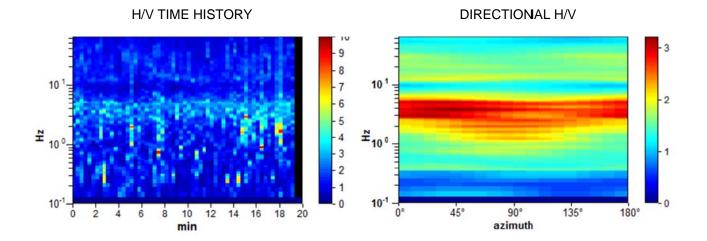
Instrument: TR-0007-01-05

Data format: 16 byte Full scale [mV]: n.a.

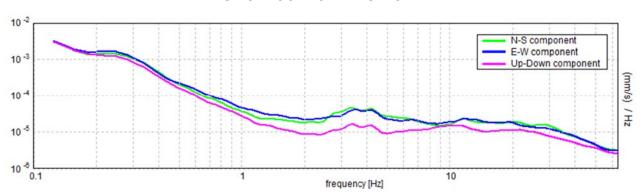
Start recording: 17/06/16 16:01:08 End recording: 17/06/16 16:21:09

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analysis performed on the entire trace.

Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 3.75 ± 0.75 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	3.75 > 0.50	OK		
$n_c(f_0) > 200$	4500.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 181 times	OK		
	a for a clear H/V neak		1	
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Criteri	-		NO	
Criteri [At least	-	OK	NO	
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO	
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 7.5 Hz		NO NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 7.5 Hz 2.92 > 2			

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\log H/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 2A

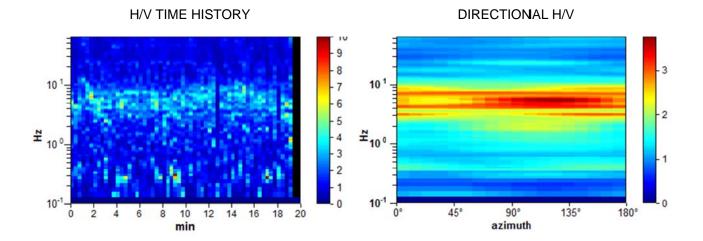
Instrument: TR-0007-01-05

Data format: 16 byte Full scale [mV]: n.a.

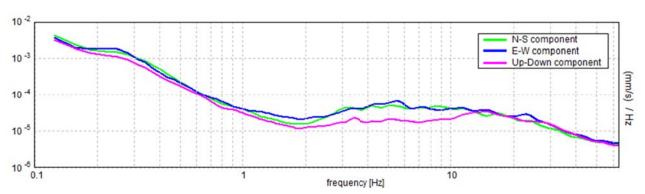
Start recording: 17/06/16 16:39:28 End recording: 17/06/16 16:59:29

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analysis performed on the entire trace.

Sampling rate: 128 Hz Window size: 20 s


Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 4.06 ± 1.01 Hz (in the range 0.0 - 64.0 Hz).

A]	ll 3 should be fulfilled]		
$f_0 > 10 / L_w$	4.06 > 0.50	OK	
$n_c(f_0) > 200$	4875.0 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 196 times	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteri	a for a clear H/V peak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
	•	ОК	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled]	OK OK	
[At least	5 out of 6 should be fulfilled] 1.531 Hz		
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 1.531 Hz 11.469 Hz	OK	NO
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 1.531 Hz 11.469 Hz 3.06 > 2	OK	NO NO

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 2V

Instrument: EXT- SARA SR04HS

Data format: 16 byte Full scale [mV]: n.a.

Start recording: 17/06/16 16:14:13 End recording: 17/06/16 16:34:13

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h20'00". Analysis performed on the entire trace.

Sampling rate: 200 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

10

10 12

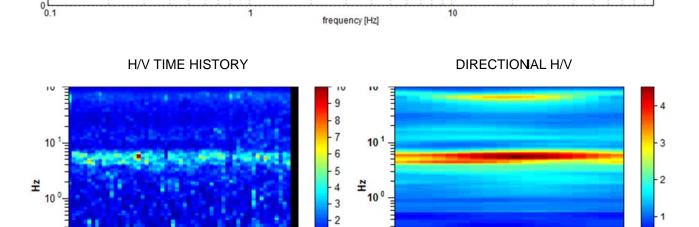
min

14 16

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 5.57 ± 6.85 Hz (in the range 0.0 - 64.0 Hz).

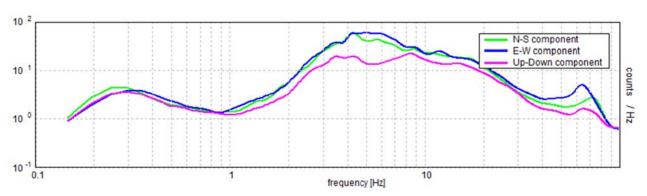
Average H/V


45°

90°

azimuth

135°


180°

1

10-1

Max. H/V at 5.57 ± 6.85 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	5.57 > 0.50	OK		
$n_{c}(f_{0}) > 200$	6679.7 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 172 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
		OK		
[At least	5 out of 6 should be fulfilled]	OK OK		
[At least : Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 3.418 Hz			
[At least : Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 3.418 Hz 7.227 Hz	OK	NO	
[At least section of the section of	3.418 Hz 7.227 Hz 3.91 > 2	OK	NO NO	

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 3A

Instrument: TR-0007-01-05

Data format: 16 byte Full scale [mV]: n.a.

Start recording: 17/06/16 17:15:46 End recording: 17/06/16 17:35:47

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

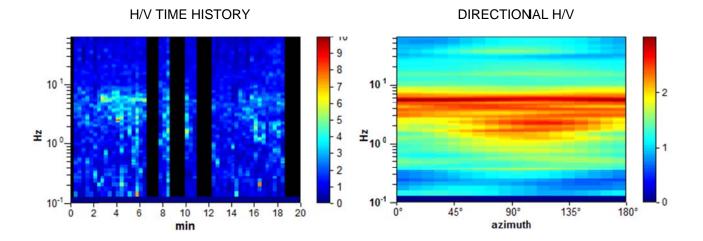
Trace length: 0h20'00". Analyzed 73% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s

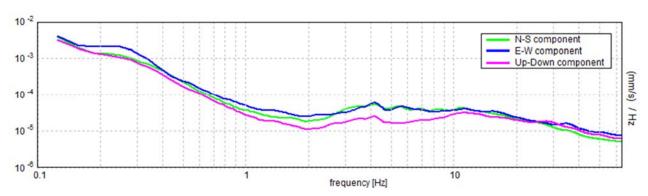
Smoothing type: Triangular window

Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 5.5 ± 1.22 Hz. (In the range 0.0 - 64.0 Hz).

Average H/V


Average H/V

T

frequency [Hz]

Max. H/V at 5.5 ± 1.22 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	5.50 > 0.50	OK		
$n_c(f_0) > 200$	4840.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 265 times	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5\text{Hz}$			
	<u> </u>		-	
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
[At least Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	-		NO	
[At least	-	ОК	NO	
[At least Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled] 9.469 Hz		NO NO	
[At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	9.469 Hz 2.83 > 2			

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 3V

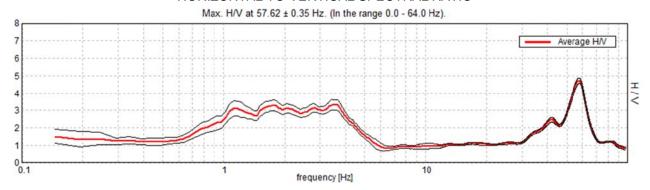
Instrument: EXT- SARA SR04HS

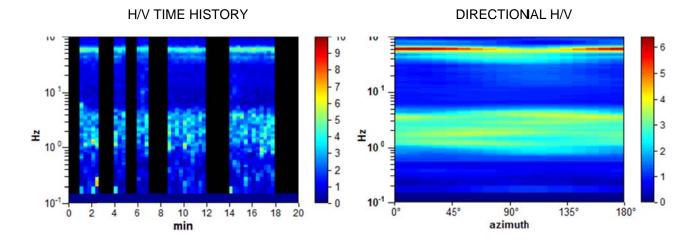
Data format: 16 byte Full scale [mV]: n.a.

Start recording: 17/06/16 16:53:47 End recording: 17/06/16 17:13:47

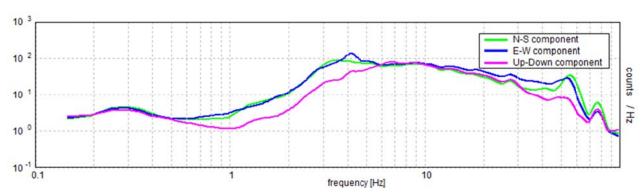
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 55% trace (manual window selection)


Sampling rate: 200 Hz Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 57.62 ± 0.35 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	57.62 > 0.50	OK		
$n_c(f_0) > 200$	38027.3 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1459	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	47.949 Hz	OK		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	64.844 Hz	OK		
A ₀ > 2	4.72 > 2	OK		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.00606 < 0.05	OK		
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	0.34901 < 2.88086	OK		
$\sigma_{A}(f_0) < \theta(f_0)$	0.1587 < 1.58	OK	·	

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 4A

Instrument: TR-0007-01-05

Data format: 16 byte Full scale [mV]: n.a.

Start recording: 17/06/16 17:59:09 End recording: 17/06/16 18:19:10

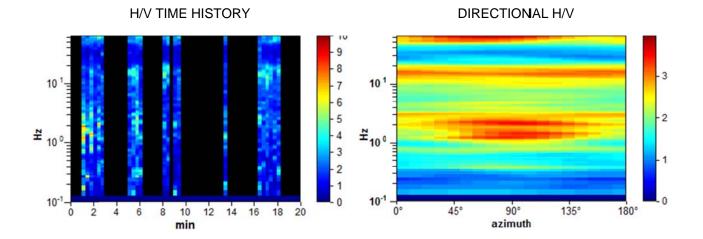
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

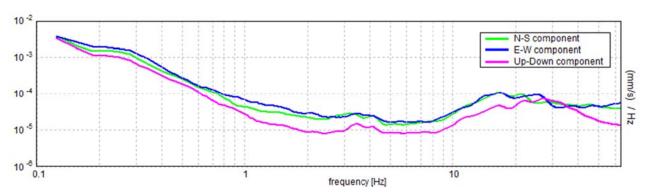
Trace length: 0h20'00". Analyzed 35% trace (manual window selection)

Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO


Max. H/V at 63.97 ± 48.89 Hz. (In the range 0.0 - 64.0 Hz).

Average H/V

frequency [Hz]

Max. H/V at 63.97 ± 48.89 Hz (in the range 0.0 - 64.0 Hz).

	for a reliable H/V curve I 3 should be fulfilled]		
$f_0 > 10 / L_w$	63.97 > 0.50	OK	
$n_c(f_0) > 200$	26866.9 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1026	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times		
Critoria	for a clear U/V neak		
	a for a clear H/V peak 5 out of 6 should be fulfilled]		
[At least 5	-	ОК	
	out of 6 should be fulfilled]	ок	NO
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	out of 6 should be fulfilled]	OK OK	NO
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 42.281 Hz	-	NO NO
[At least 5] Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 42.281 Hz 3.25 > 2	-	

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 5A

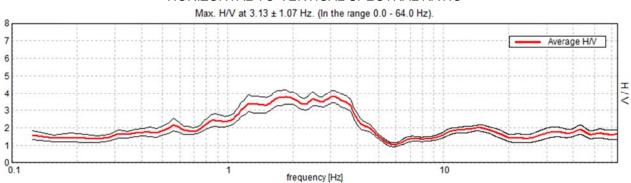
Instrument: TR-0007-01-05

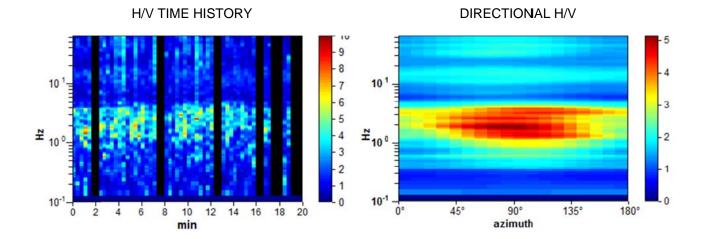
Data format: 16 byte Full scale [mV]: n.a.

Start recording: 17/06/16 19:08:39 End recording: 17/06/16 19:28:40

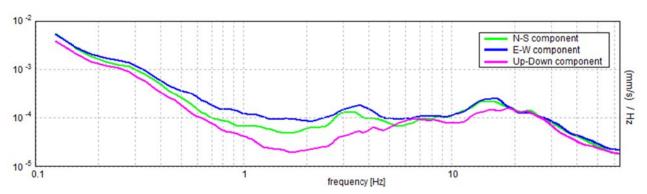
Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available


Trace length: 0h20'00". Analyzed 77% trace (manual window selection)


Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Triangular window


Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

Max. H/V at 3.13 ± 1.07 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	3.13 > 0.50	OK		
$n_c(f_0) > 200$	2875.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 151 times	OK		
SA(1) 1 0 10 10 10 10 10 10 10 10 10 10 10 10			1	
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$			NO	
Criteri [At least		ОК	NO	
Criteri [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	5 out of 6 should be fulfilled]	OK OK	NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled] 4.688 Hz		NO NO	
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$	5 out of 6 should be fulfilled] 4.688 Hz 3.78 > 2			

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
À ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,,,,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

SALTINO, 5V

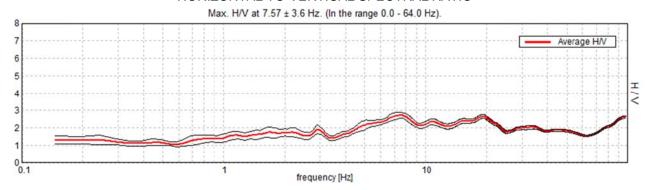
Instrument: EXT- SARA SR04HS

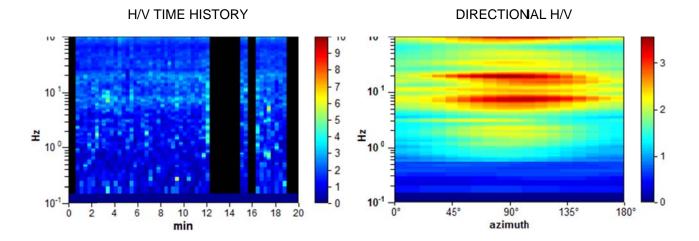
Data format: 16 byte Full scale [mV]: n.a.

Start recording: 17/06/16 18:54:10 End recording: 17/06/16 19:14:10

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

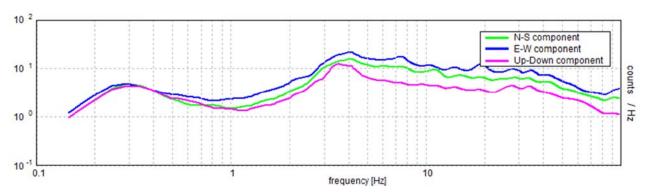
GPS data not available


Trace length: 0h20'00". Analyzed 75% trace (manual window selection)


Sampling rate: 200 Hz Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%


HORIZONTAL TO VERTICAL SPECTRAL RATIO

SINGLE COMPONENT SPECTRA

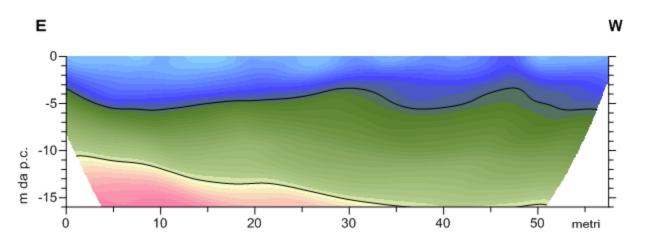
[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

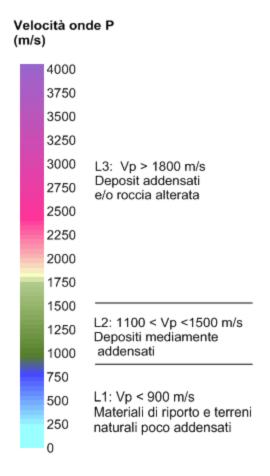
Max. H/V at 7.57 ± 3.6 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	7.57 > 0.50	OK				
$n_c(f_0) > 200$	6811.5 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$	Exceeded 0 out of 234 times	OK				
			1			
Criteri	a for a clear H/V peak 5 out of 6 should be fulfilled]					
Criteri			NO			
Criteri [At least			NO NO			
Criteria [At least Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$		ОК	_			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0/2$ $A_0 > 2$	5 out of 6 should be fulfilled]	ОК	_			
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	5 out of 6 should be fulfilled] 2.72 > 2	ОК	NO			

L_{w}	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σ_{f}	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$								
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0								
$\epsilon(f_0)$ [Hz] 0.25 f_0 0.2 f_0 0.15 f_0 0.10 f_0 0.05 f_0								
$\theta(f_0)$ for $\sigma_A(f_0)$ 3.0 2.5 2.0 1.78 1.58								
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20			


ALLEGATO 4

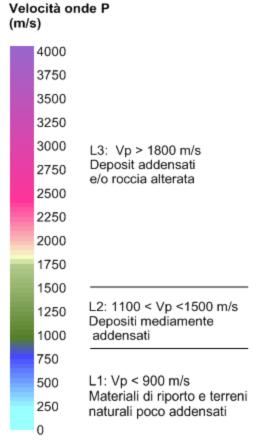

Tomografie sismiche a rifrazione (nuova esecuzione)

PROVINCIA DI MODENA COMUNE DI PRIGNANO

INDAGINE SISMICA A RIFRAZIONE ELABORAZIONE TOMOGRAFICA

SEZIONE SAL1VP





PROVINCIA DI MODENA COMUNE DI PRIGNANO

INDAGINE SISMICA A RIFRAZIONE ELABORAZIONE TOMOGRAFICA

ALLEGATO 5

Elaborazioni propedeutiche alla valutazione della pericolosità locale legata ad instabilità di versante sismoindotte nelle località di Saltino, Montefiorino e Palagano (Modena)

Relazione a cura del Prof. Dario Albarello

(CD allegato a questa relazione) Versione digitale: vedi "Allegato 5"

ALLEGATO 6

Report dell'analisi di stabilità pseudo-statica eseguita per questo studio tramite codice di calcolo SSAP (superficie a FS minimo prossimo al valore soglia di 1,2 ottenuta con coefficiente sismico orizzontale k_h pari a 0,012)

Report dell'analisi di stabilità statica eseguita per questo studio tramite codice di calcolo SSAP

```
1650. 39 418. 64
      1777. 90 483. 96
      1826.07 506.83
 ---- SUP FALDA -----
              Y (in m)
    597. 14 230. 88
   648. 10 230. 99
   718. 57 231. 90
    835. 37 262. 40
   867.96 271.11
   890. 29 275. 63
   941. 38 286. 45
   1026. 20 304. 07
   1090. 42
           317.42
   1133.57
           326. 52
   1190. 36 338. 24
  1242. 42 346. 78
   1326. 14 360. 51
  1403.70 373.22
   1442.66 379.61
   1502. 91 387. 80
   1543. 23 392. 61
   1586. 19 397. 58
   1622.30 402.01
   1654.50 410.63
   1782.00 475.95
   1826.07 497.83
    ----- GESTIONE ACQUIFERI -----
Strati esclusi da acquifero:
Esclusione sovraccarico pendio sommerso: NON ATTIVATA
Peso unitario fluido (kN/m^3):
                                  9.81
Parametri funzione dissipazione superficiale pressione dei fluidi:
         Coefficiente A
         Coefficiente K
                                                0.000800
        Pressione minima fluidi Uo_Min (kPa)
                                                  0.01
        Coefficiente di soprapressione ol tré pressione hidrostatica1.00
        Limitazione dissipazionea a Pressione Idrostatica = ATTIVA
        STABILITE CONDIZIONI PER LA VERIFICA CON SOVRAPPRESSIONE ACQUIFERI CON DISSIPAZIONE IN DIREZIONE DELLA
SUPERFICIE
```

	PARAMETRI	GEOMECCANI C	l						
D		fi`	C`	Cu	Gamm	Gamm_sat	STR_I DX	sgci	GSI
D STRAT 0. 00) 1	37. 00	0.00	0.00	18. 00	19. 00	2. 651	0.00	0.00
0.00 STRAT 0.00) 2	40. 00	0.00	0.00	18. 00	19. 00	3. 055	0. 00	0.00
0.00 STRAT 0.00	3	49. 00	0.00	0.00	19. 00	20. 00	4. 557	0. 00	0.00
0. 00 STRAT 0. 00	0 4	39.00	0.00	0. 00	19. 00	20. 00	2. 916	0.00	0.00
Uso CRITERI	LEGENDA: fi` Angolo di attrito interno efficace(in gradi) C` Coesione efficace (in Kpa) Cu Resistenza al taglio Non drenata (in Kpa) Gamm Peso di volume terreno fuori falda (in KN/m^3) Gamm_sat Peso di volume terreno immerso (in KN/m^3) STR_IDX Indice di resistenza (usato in solo in 'SNIFF SEARCH) (adimensionale) SOLO Per AMMASSI ROCCIOSI FRATTURATI - Parametri Criterio di Rottura di Hoek (2002)- sigci Resistenza Compressione Uniassiale Roccia Intatta (in MPa) GSI Geological Strenght Index ammasso(adimensionale) mi Indice litologico ammasso(adimensionale) D Fattore di disturbo ammasso(adimensionale) Fattore di riduzione NTC2018 gammaPHI=1.25 e gammaC=1.25 - DISATTIVATO (solo per ROCCE) Uso CRITERIO DI ROTTURA Hoek et al. (2002, 2006) - non-lineare - Generalizzato secondo Lei et al. (2016)								
*** PARAM METOD FILTR COORD LUNGH INTER	*** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI RANDOM *** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI METODO DI RICERCA: CONVEX RANDOM - Chen (1992) FILTRAGGIO SUPERFICI: ATTIVATO COORDINATE X1, X2, Y OSTACOLO: 0.00 0.00 LUNGHEZZA MEDIA SEGMENTI (m): 49.2 (+/-) 50% INTERVALLO ASCISSE RANDOM STARTING POINT (Xmin Xmax): 597.14 1703.18 LIVELLO MINIMO CONSIDERATO (Ymin): 0.00 INTERVALLO ASCISSE AMMESSO PER LA TERMINAZIONE (Xmin Xmax): 720.03 1801.49								
*** TOTAL	E SUPERFIC	I GENERATE :	1000	0					
METOD COEFF COEFF COEFF FORZA	D DI CALCO CIENTE SI CIENTE SI CIENTE C ORIZZONTA	AZIONI PARAM LO : MORGENS SMICO UTILIZ SMICO UTILIZ =Kv/Kh UTILI LE ADDIZIONA LE ADDIZIONA	TERN - PRICE ZATO Kh : O. ZATO Kv (ass ZZATO : O.50 LE IN TESTA	(Morgenste 0000 unto Positiv 00 (kN/m): 0.00	ern & Price /o): 0.0000)				

mi

0. 000. 00

0. 000. 00

durante le tutte le verifiche globali.

```
N.B. Le forze orizzontali addizionali in testa e alla base sono poste uguali a 0
         I valori >0 impostati dall'utente sono utilizzati solo in caso di verifica singola
 ----- RISULTATO FINALE ELABORAZIONI ------
   * DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *
Fattore di sicurezza (FS)
                            1.2615 - Min. - X
                                                                Lambda= 0.5305
                                            1637. 26 415. 22
                                            1651. 26 413. 05
                                            1658.06 412.11
                                            1662.72 411.62
                                            1666. 71 411. 37
                                            1670. 50 411. 32
                                            1674. 11 411. 41
                                            1677. 93 411. 65
                                            1682.00 412.05
                                            1686. 71 412. 65
                                            1690. 74 413. 30
                                            1694. 51 414. 06
                                            1698.06 414.95
                                            1701.83 416.08
                                            1705. 38 417. 31
                                            1709. 15 418. 79
                                            1713. 14 420. 53
                                            1717. 75 422. 69
                                            1721.82 424.73
                                            1725. 69
                                                     426.81
                                            1729. 38 428. 94
                                            1733. 20 431. 30
                                            1736. 89
                                                     433.73
                                            1740. 74
                                                     436. 41
                                            1744. 79
                                                     439.38
                                            1749. 29 442. 83
```

1753. 27 446. 07 1757.08 449.39 1760. 72 452. 79

1773. 33 466. 38 1780. 16 474. 59 1793. 99 491. 60

456.59

460.99

1764. 53

1768. 62

Fattore di sicurezza (FS) 1. 2622 - N. 2 -- X Lambda= 0.5245 Υ Pagi na 4

```
1622.44 411.35
                     1635.77
                                 406.56
                     1641. 96
                                 404.50
                     1646.04
                                 403.38
                     1649. 37
1652. 73
                                 402.72
                                 402. 38
                     1655. 69
                                 402. 29
                     1658. 92
                                 402.43
                     1662.38
                                 402.79
                     1666. 56
                                 403.43
                     1670. 48
                                 404.04
                     1674. 22
1677. 88
                                 404.62
                                 405.19
                     1681.44
                                 405.76
                     1685.06
                                 406.35
                     1688. 72
                                 406.94
                     1692. 49
                                 407.56
                     1696. 39
                                 408. 21
                     1699. 89
1703. 28
                                 408.90
                                 409.70
                     1706. 54
                                 410. 59
                     1710.00 411.68
                     1713. 31 412. 86
                     1716. 80 414. 25
                     1720. 51 415. 86
                     1724. 77 417. 83
                     1728. 43 419. 68
                     1731. 88 421. 60
1735. 14 423. 61
                     1738. 59 425. 94
                     1730. 37 423. 74
1741. 88 428. 35
1745. 35 431. 10
1749. 05 434. 22
1753. 28 437. 98
                     1756. 96
                                 441.46
                     1760. 44 445. 03
1763. 74 448. 68
                     1767. 21
                                 452.82
                     1770. 91 457. 63
1775. 20 463. 57
1781. 44 472. 68
                     1794. 11 491. 66
1. 2628 - N. 3 -- X
                                 Υ
                                               Lambda= 0.5273
                     1645.60 417.39
                     1656. 42 415. 64
                                Pagi na 5
```

```
1661. 78 414. 84
                 1665. 51 414. 38
                 1668. 75 414. 06
                 1671.77 413.87
                 1674. 70 413. 76
                 1677. 76 413. 72
                 1681.00 413.76
                 1684.62 413.88
                 1687. 73 414. 10
                 1690. 67 414. 42
                 1693. 43 414. 85
                 1696. 39 415. 46
                 1699. 16 416. 16
1702. 09 417. 05
                 1705. 19 418. 11
                 1708. 74 419. 45
                 1711. 98 420. 73
                 1715.07 422.02
                 1718.06 423.34
                 1721.09 424.74
                 1724. 07 426. 19
                 1727. 14 427. 75
                 1730. 32 429. 44
                 1733. 77 431. 33
                 1736. 87 433. 14
                 1739.86 435.01
                 1742. 73
1745. 73
                          436. 94
                          439. 10
                 1748. 62
                          441.30
                 1751. 63
                          443.74
                 1754. 79 446. 42
                 1758. 29
                          449.52
                 1761. 45
                          452.46
                 1764. 47
                          455.44
                 1767. 38
                           458.47
                 1770. 39
                          461.79
                 1773. 65
                          465.62
                 1777. 38 470. 23
                 1782. 75 477. 17
                 1793. 55 491. 39
1. 2657 - N. 4 -- X
                             Υ
                                      Lambda= 0.5207
                 1616. 44
                          410. 29
                 1629. 92
                          408. 16
                 1636. 51
                          407. 22
                 1641.05 406.72
                          Pagi na 6
```

```
1644. 96
                                 406.42
                     1648.65
                                 406.31
                     1652. 16
                                 406.32
                     1655.85
                                 406.47
                     1659. 73
1664. 11
                                 406.74
                                 407.17
                     1668.03
                                 407.64
                     1671. 75
                                 408.20
                     1675. 32
1679. 02
                                 408.84
                                 409.62
                     1682.57
                                410.48
                     1686. 25
                                411. 48
                     1690. 08 412. 63
1694. 30 414. 00
                     1698. 21
                                415.34
                     1701. 99 416. 71
                     1705.66 418.11
                     1709. 40
                                419.61
                    1713. 08 421. 16
1716. 87 422. 83
1720. 79 424. 64
1725. 03 426. 67
                     1728. 84 428. 62
                     1732. 51
                                 430.64
                     1736. 04
                                432.74
                    1736. 04
1739. 74
1743. 29
1747. 00
1750. 90
1755. 24
                                435.09
                                437.51
                                440. 20
                                443.17
                                446.63
                     1759. 12
                                 449.89
                     1762. 83
                                453.20
                                456. 58
460. 30
                     1766. 40
                    1770. 11
1774. 10
1778. 68
1785. 30
                                 464.60
                                469.80
                                477.65
                     1798.63 493.80
1. 2725 - N. 5 --
                        Χ
                                    Υ
                                               Lambda = 0.5356
                     1642.88 416.68
                     1656. 43 414. 40
                     1662. 92 413. 44
                     1667. 32 412. 98
                     1671.04 412.77
                     1674.64 412.79
                                Pagi na 7
```

```
1677. 99 412. 97
                  1681.59 413.34
                  1685.44 413.90
                  1689. 98 414. 71
                  1693. 89 415. 53
1697. 54 416. 44
                  1700. 99 417. 45
                  1704.61 418.66
                  1708.05
                             419. 97
                  1711. 67
                             421.50
                  1715. 51
                             423.27
                  1719. 88
1723. 75
                             425.43
                             427.47
                  1727. 43
                             429.55
                  1730. 94 431. 69
                  1734. 58 434. 06
1738. 10 436. 50
                  1741. 75
                             439. 20
                  1745.58
                             442. 17
                  1749. 81
                             445.60
                  1753.65
                             448.85
                  1757. 34
                             452.14
                  1760.89 455.49
                  1764. 56
                             459. 11
                  1768. 54
                             463. 28
                  1773. 08 468. 27
1779. 62 475. 74
1792. 70 490. 99
1. 2815 - N. 6 -- X
                                          Lambda= 0.5016
                  1607. 13
                             409. 16
                  1618.00
                             407.01
                  1623.66
                             405.89
                  1627. 70
                             405.08
                  1631. 34
1634. 56
                             404.36
                             403. 72
403. 07
                  1637.87
                  1641. 24
                             402.40
                  1644.77
                             401.70
                  1648. 48
                             400.96
                   1651.60
                             400.48
                  1654.54
                             400.20
                  1657. 25
                             400.12
                  1660. 28
                             400. 24
                  1663.01
                             400.52
                  1665. 98 401. 04
                            Pagi na 8
```

```
1669. 16 401. 78
                    1672. 98
                               402.83
                    1676. 48
                              403.83
                    1679. 79
                               404.82
                    1682. 99
                               405.82
                    1686. 18
                               406.87
                    1689. 34
                               407.94
                    1692.55
                               409.08
                   1695. 84 410. 30
1699. 30 411. 61
1702. 55 412. 91
                    1705. 72 414. 24
                    1708. 81
                              415.61
                    1711. 99 417. 09
                    1715. 10 418. 62
                   1718. 31
1721. 64
                               420. 26
                              422.03
                    1725. 24
                              424.02
                    1728. 49 425. 92
                   1731. 62 427. 88
1734. 64 429. 90
                    1737. 78 432. 14
                    1740.83 434.44
                   1744.00 436.97
1747.33 439.76
                    1751. 03
                               443.00
                    1754. 31
                               446.04
                   1757. 45
1760. 45
1763. 59
                              449. 15
                               452.34
                              455.90
                    1766. 96
                              460.03
                   1770. 84
1776. 47
                              465.09
                              472.77
                    1787.85 488.69
1. 2885 - N. 7 -- X
1597. 77
                                Υ
                                            Lambda= 0.4852
                              408.04
                    1612.63
                               402.26
                   1619. 71
1624. 48
                               399.67
                               398.15
                               397.10
                    1628. 49
                    1632.39
                               396.35
                   1636. 00
1639. 90
                               395.87
                               395.57
                    1644. 14
                               395.44
                    1649. 24 395. 48
                              Pagi na 9
```

```
1653. 51
                            395.66
                  1657. 46
                            395.99
                  1661. 12
                            396.49
                  1665.03
                            397. 22
                  1668.67
                            398.08
                  1672. 52
                            399. 18
                  1676. 58
                            400.52
                  1681. 24
                            402.23
                  1685. 56
1689. 70
                            403.87
                            405.50
                  1693. 73
                            407.14
                  1697. 76
                            408.85
                  1701. 76
                           410.60
                  1705. 83 412. 45
                  1710.01 414.41
                  1714. 44 416. 55
1718. 54 418. 62
                  1722. 52 420. 76
                  1726. 40 422. 95
                  1730. 40 425. 34
                  1734. 32
                            427.80
                  1738. 40 430. 48
                  1742. 70 433. 44
1747. 48 436. 83
1751. 55 440. 00
                  1755. 42
                            443.32
                  1759. 06
                            446. 79
                  1762. 99 450. 89
                  1767. 11 455. 68
                  1771. 95 461. 77
                  1779.07 471.30
                  1793. 72 491. 47
1. 2889 - N. 8 -- X
                                         Lambda= 0.5322
                  1615. 48 410. 17
                  1629. 33
1635. 80
                            406.02
                            404. 24
                  1640. 10
                            403. 29
                  1643.64
                            402.75
                  1647. 17
                            402.52
                  1650. 33 402. 52
                  1653.76
                            402.75
                  1657. 42
                            403.21
                  1661.80
                            403.94
                  1665.86 404.65
                  1669. 72 405. 36
                           Pagi na 10
```

```
1673. 47 406. 08
                    1677. 18
                                406.82
                    1680. 92
                                407.60
                    1684.74
                                408.43
                    1688. 73
                                409.33
                    1692. 99
                               410. 32
                    1696.66 411.32
                    1700. 15 412. 47
                    1703.44 413.74
                    1707. 02 415. 33
                    1710. 35 417. 01
                    1713. 89 419. 00
1717. 63 421. 30
                    1721. 94 424. 13
                    1725. 89 426. 81
                    1729. 67 429. 45
1733. 33 432. 10
                    1737. 02 434. 87
                    1740.65 437.68
                    1744. 36
                               440.65
                    1748. 17
                                443. 79
                    1752. 23
                               447. 21
                    1756.00 450.51
                    1759. 67 453. 87
1763. 25 457. 27
                    1766. 93
                                460.92
                    1770. 95 465. 09
1775. 51 470. 02
1782. 04 477. 32
                    1795.02 492.09
1. 3095 - N. 9 -- X Y
1630. 17 413. 36
1641. 57 412. 71
1647. 51 412. 36
                                              Lambda= 0.5368
                    1651.74 412.12
                    1655. 56 411. 90
                    1658. 94 411. 70
                    1662. 41
                               411.50
                    1665. 94 411. 30
                    1669.63 411.08
                    1673. 52 410. 86
                    1676. 79 410. 82
1679. 87 410. 95
                    1682. 73 411. 27
                    1685. 92 411. 84
                              Pagi na 11
```

```
1688. 83 412. 55
                                                 1691. 98 413. 53
                                                 1695. 40 414. 79
                                                 1699. 51 416. 48
                                                 1703. 13 418. 07
1706. 53 419. 66
                                                 1709. 76 421. 28
                                                 1713. 07 423. 06
                                                 1716. 27
1719. 57
                                                           424.88
                                                           426.86
                                                 1722. 99 429. 03
                                                 1726. 71
                                                           431.49
                                                 1730. 19
                                                           433.85
                                                 1733. 55
                                                           436. 23
                                                 1736.84
                                                           438.63
                                                 1740. 18
                                                           441. 15
                                                 1743. 45
                                                           443.71
                                                 1746. 80
                                                           446.40
                                                 1750. 22
                                                            449.24
                                                 1753. 85
1757. 28
                                                           452.33
                                                           455.33
                                                 1760.63
                                                           458.35
                                                 1763. 92
                                                           461.40
                                                 1767. 27
                                                           464.59
                                                 1770. 95
1775. 11
                                                           468. 24
                                                           472.47
                                                 1781.02 478.64
                                                 1792.68 490.98
Fattore di sicurezza (FS)
                                1. 3121 - N. 10 --
                                                                         Lambda= 0.4884
                                                 1585.87
                                                            406.60
                                                 1598. 70
                                                           404.41
                                                 1605. 39
                                                            403.26
                                                 1610. 15
                                                            402.45
                                                 1614. 46
                                                            401.71
                                                 1618. 26
                                                            401.06
                                                 1622. 16
                                                            400.40
                                                 1626. 11
                                                            399.72
                                                 1630. 21
                                                            399.02
                                                 1634.48
                                                           398. 29
                                                           397.80
                                                  1638. 19
                                                  1641. 72
                                                           397.50
                                                 1645.04
                                                           397.39
                                                 1648.67
                                                           397.47
                                                 1652.02 397.72
                                                 1655. 61 398. 19
                                                          Pagi na 12
```

```
1659. 43 398. 87
1663. 93
          399.83
1667. 98 400. 77
1671.80
           401.75
1675. 48
1679. 22
           402.78
          403. 91
1682.86
          405.11
1686, 62
          406.42
1690. 50
          407.88
1694. 72
          409. 54
1698. 60 411. 15
1702. 34 412. 81
1705. 97 414. 52
1709. 71 416. 38
1713. 33 418. 29
1717. 04
          420.34
1720.86
          422.56
1724. 94 425. 02
1728.85 427.43
1732.68 429.82
1736. 45 432. 23
1740. 23 434. 69
1744.03 437.20
1747. 90 439. 82
1751. 94 442. 58
1756. 24
          445.58
1759. 97
          448.41
1763.56
          451.40
1766. 97
          454.53
1770. 64 458. 21
1774. 51 462. 50
1779. 05 467. 91
1785. 69 476. 34
1799. 33 494. 14
```

DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *
Analisi Deficit in riferimento a FS(progetto) = 1.100

Sup N.	FS	FTR(kN/m)	FTA(kN/m)	Bilancio(kN/m)	ESI TO
[.] 1	1. 261	29356. 1	23271. 4	3757. 6	Surpl us
2	1. 262	38367. 4	30396. 4	4931. 3	Surpl us
3	1. 263	28279. 5	22395.0	3644. 9	Surpl us
4	1. 266	33387. 7	26379. 2	4370. 5	Surpl us
5	1. 273	27155. 7	21340. 3	3681. 4	Surpl us
6	1. 281	35777.6	27919. 4	5066. 3	Surpl us

Pagi na 13

7	1. 288	41847. 0	32478. 6	6120. 6	Surpl us
8	1. 289	34280. 2	26597. 2	5023. 3	Surpl us
9	1. 309	27637.6	21105. 9	4421. 1	Surpl us
10	1. 312	41567. 3	31678. 9	6720. 5	Surpl us

Esito analisi: SURPLUS di RESISTENZA!

Valore minimo di SURPLUS di RESISTENZA (kN/m): 3644.9

Note: FTR --> Forza totale Resistente rispetto alla superficie di scivolamento (componente Orizzontale)

FTA --> Forza totale Agente rispetto alla superficie di scivolamento (componente Orizzontale)

IMPORTANTE! : II Deficit o il Surplus di resistenza viene espresso in kN per metro di LARGHEZZA rispetto al fronte della scarpata

TABELLA PARAMETRI CONCI DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X	ďχ	al pha	W	ŗu	U U	phi '	(c', Cu)
(m)	(m)	(°)	(kN/m)	(-)	(kPa)	(°)	(kPa)
1637. 265	1. 143	-8. 82	4. 89	0.00	0.00	37. 00	0.00
1638. 407	1. 143	-8. 82	14. 66	0. 00	0.00	37. 00	0. 00
1639. 550	1. 143	-8. 82	24. 43	0. 00	0. 00	37. 00	0. 00
1640. 692	1. 143	-8. 82	34. 21	0. 00	0. 00	37. 00	0. 00
1641. 835	1. 143	-8. 82	43. 98	0.00	0. 00	37. 00	0. 00
1642. 977	1. 143	-8. 82	53. 76	0.00	0. 00	37. 00	0. 00
1644. 120	1. 143	-8.82	63. 53	0.00	0.00	37.00	0. 00
1645. 262	1. 143	-8.82	73. 30	0.00	0.00	37.00	0. 00
1646. 405	1. 143	-8.82	83. 08	0.00	0.00	37.00	0. 00
1647. 548	1. 143	-8. 82	92.85	0.00	0.00	37.00	0. 00
1648. 690	0. 581	-8. 82	50. 99	0.00	0.00	37.00	0. 00
1649. 271	1. 119	-8. 82	105. 25	0.00	0.00	40.00	0. 00
1650. 390	0. 170	-8.82	16. 88	0.00	0.00	40.00	0. 00
1650. 560	0. 702	-8. 82	73. 41	0.00	0.00	40.00	0. 00
1651. 262	1. 143	-7.86	131. 89	0.00	0.00	40.00	0. 00
1652. 405	1. 143	-7. 86	147. 18	0.00	0. 05	40.00	0. 00
1653. 547	0. 953	-7. 86	134. 40	0.00	0. 22	40.00	0. 00
1654. 500	1. 143	-7. 86	175. 20	0.00	0. 82	40.00	0. 00
1655. 643	1. 143	-7. 86	190. 48	0.00	2. 01	40.00	0. 00
1656. 785	0. 741	-7. 86	131. 62	0. 01	3. 95	40.00	0. 00
1657. 526	0. 534	-7. 86	98. 83	0. 02	5. 64	40.00	0. 00
1658. 059	1. 143	-5. 91	223. 20	0. 03	7.42	40.00	0. 00
1659, 202	1. 143	-5. 91	238. 48	0.06	12. 75	40.00	0. 00
1660. 344	1. 143	-5. 91	253. 75	0. 09	19. 98	40. 00	0. 00

1661, 487 1, 143 -5, 91 269, 02 0, 12 27, 44 40, 00 0, 00 1662, 720 1, 143 -3, 63 285, 01 0, 14 33, 43 40, 00 0, 00 1663, 863 1, 143 -3, 63 289, 29 0, 15 39, 43 40, 00 0, 00 1666, 005 1, 143 -3, 63 313, 57 0, 17 45, 71 40, 00 0, 00 1666, 188 0, 560 -3, 63 189, 04 0, 18 52, 77 40, 00 0, 00 1666, 708 1, 143 -0, 81 334, 25 0, 19 56, 03 40, 00 0, 00 1667, 851 1, 143 -0, 81 347, 30 0, 21 68, 27 40, 00 0, 00 1670, 136 0, 369 -0, 81 119, 01 0, 23 75, 93 40, 00 0, 00 1671, 647 1, 143 1, 44 377, 14 0, 23 75, 93 40, 00 0, 00 1672, 790 1, 143 1, 44 401, 30 0, 25 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
1662, 720	1661. 487	1. 143	-5. 91	269. 02	0. 12	27. 44	40. 00	0. 00
1662, 720	1662 629	0 091	-5 91	22 00	0.13	33 00	40 00	0 00
1663. 863 1.143 -3.63 299. 29 0.15 39. 43 40.00 0.00 1665. 005 1.143 -3.63 313. 57 0.17 45. 71 40.00 0.00 1666. 708 1.143 -0.81 334. 25 0.19 56. 63 40.00 0.00 1667. 851 1.143 -0.81 334. 25 0.19 56. 63 40.00 0.00 1668. 993 1.143 -0.81 360. 36 0.22 68. 27 40.00 0.00 1670. 136 0. 369 -0.81 119. 01 0.23 73. 89 40.00 0.00 1671. 647 1.143 1.44 377. 14 0.23 75. 93 40.00 0.00 1672. 790 1.143 1.44 401. 30 0.25 86. 71 40.00 0.00 1673. 392 0.179 1.44 401. 30 0.25 91. 73 40.00 0.00 1677. 533 0.392 3.66 412. 79 0.26 97. 50 40.00								
1665. 005 1. 143 -3. 63 313. 57 0. 17 45. 71 40. 00 0. 00 1666. 148 0. 560 -3. 63 159. 04 0. 18 52. 37 40. 00 0. 00 1667. 851 1. 143 -0. 81 347. 30 0. 21 62. 32 40. 00 0. 00 1668. 993 1. 143 -0. 81 360. 36 0. 22 68. 27 40. 00 0. 00 1670. 136 0. 369 -0. 81 119. 01 0. 23 73. 89 40. 00 0. 00 1671. 647 1. 143 1. 44 389. 22 0. 24 81. 45 40. 00 0. 00 1672. 790 1. 143 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1677. 538 0. 392 3. 66 152. 67 0. 28								
1666. 148 0. 560 -3. 63 159. 04 0. 18 52. 37 40. 00 0. 00 1667. 851 1. 143 -0. 81 347. 30 0. 21 62. 32 40. 00 0. 00 1668. 993 1. 143 -0. 81 347. 30 0. 22 68. 27 40. 00 0. 00 1670. 136 0. 369 -0. 81 119. 01 0. 23 73. 89 40. 00 0. 00 1670. 504 1. 143 1. 44 377. 14 0. 23 75. 93 40. 00 0. 00 1671. 647 1. 143 1. 44 389. 22 0. 24 81. 45 40. 00 0. 00 1673. 932 0. 179 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1675. 253 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1677. 538 0. 392 3. 66 425. 91 0. 26 92. 63 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28	1663. 863	1. 143				39. 43		0.00
1666. 148 0. 560 -3. 63 159. 04 0. 18 52. 37 40. 00 0. 00 1667. 851 1. 143 -0. 81 347. 30 0. 21 62. 32 40. 00 0. 00 1668. 993 1. 143 -0. 81 347. 30 0. 22 68. 27 40. 00 0. 00 1670. 136 0. 369 -0. 81 119. 01 0. 23 73. 89 40. 00 0. 00 1670. 504 1. 143 1. 44 377. 14 0. 23 75. 93 40. 00 0. 00 1671. 647 1. 143 1. 44 389. 22 0. 24 81. 45 40. 00 0. 00 1673. 932 0. 179 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1675. 253 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1677. 538 0. 392 3. 66 425. 91 0. 26 92. 63 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28	1665 005	1 143	-3 63	313 57	0 17	45 71	40 00	0 00
1666, 708 1, 143 -0, 81 334, 25 0, 19 56, 03 40, 00 0, 00 1668, 893 1, 143 -0, 81 360, 36 0, 22 68, 27 40, 00 0, 00 1670, 136 0, 369 -0, 81 119, 01 0, 23 73, 89 40, 00 0, 00 1671, 504 1, 143 1, 44 377, 14 0, 23 73, 89 40, 00 0, 00 1671, 647 1, 143 1, 44 389, 22 0, 24 81, 45 40, 00 0, 00 1672, 790 1, 143 1, 44 401, 30 0, 25 86, 71 40, 00 0, 00 1673, 932 0, 179 1, 44 63, 82 0, 25 91, 73 40, 00 0, 00 1674, 111 1, 143 3, 66 414, 79 0, 26 92, 63 40, 00 0, 00 1675, 253 1, 143 3, 66 425, 91 0, 26 97, 50 40, 00 0, 00 1677, 538 0, 302 3, 66 152, 67 0, 28								
1667, 851 1, 143 -0, 81 347, 30 0, 21 62, 32 40, 00 0, 00 1668, 993 1, 143 -0, 81 119, 01 0, 23 73, 89 40, 00 0, 00 1670, 504 1, 143 1, 44 377, 14 0, 23 75, 93 40, 00 0, 00 1671, 647 1, 143 1, 44 389, 22 0, 24 81, 45 40, 00 0, 00 1672, 790 1, 143 1, 44 401, 30 0, 25 86, 71 40, 00 0, 00 1673, 932 0, 179 1, 44 401, 30 0, 25 86, 71 40, 00 0, 00 1674, 111 1, 143 3, 66 414, 79 0, 26 92, 63 40, 00 0, 00 1675, 253 1, 143 3, 66 437, 03 0, 27 102, 42 40, 00 0, 00 1677, 538 0, 392 3, 66 152, 67 0, 28 107, 38 40, 00 0, 00 1677, 538 0, 392 3, 64 451, 54 0, 28								
1668. 993 1, 143 -0. 81 360. 36 0. 22 68. 27 40. 00 0. 00 1670. 504 1. 143 1. 44 377. 14 0. 23 73. 89 40. 00 0. 00 1671. 647 1. 143 1. 44 387. 14 0. 23 75. 93 40. 00 0. 00 1672. 790 1. 143 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1673. 932 0. 179 1. 44 63. 82 0. 25 91. 73 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1677. 538 0. 392 3. 66 152. 67 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28		1. 143					40.00	
1668. 993 1, 143 -0. 81 360. 36 0. 22 68. 27 40. 00 0. 00 1670. 504 1. 143 1. 44 377. 14 0. 23 73. 89 40. 00 0. 00 1671. 647 1. 143 1. 44 387. 14 0. 23 75. 93 40. 00 0. 00 1672. 790 1. 143 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1673. 932 0. 179 1. 44 63. 82 0. 25 91. 73 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1677. 538 0. 392 3. 66 152. 67 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28	1667, 851	1. 143	-0. 81	347. 30	0. 21	62.32	40.00	0.00
1670. 136 0. 369 -0. 81 119. 01 0. 23 73. 89 40. 00 0. 00 1670. 504 1. 143 1. 444 387. 14 0. 23 75. 93 40. 00 0. 00 1671. 647 1. 143 1. 44 389. 22 0. 24 81. 45 40. 00 0. 00 1672. 790 1. 143 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1673. 932 0. 179 1. 44 63. 82 0. 25 91. 73 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 92. 63 40. 00 0. 00 1677. 538 0. 392 3. 66 452. 91 0. 26 97. 50 40. 00 0. 00 1677. 538 0. 392 3. 66 451. 54 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28								
1670, 504 1, 143 1, 44 377, 14 0, 23 75, 93 40, 00 0, 00 1671, 647 1, 143 1, 44 389, 22 0, 24 81, 45 40, 00 0, 00 1672, 790 1, 143 1, 44 401, 30 0, 25 86, 71 40, 00 0, 00 1673, 932 0, 179 1, 44 63, 82 0, 25 91, 73 40, 00 0, 00 1675, 253 1, 143 3, 66 414, 79 0, 26 97, 50 40, 00 0, 00 1676, 396 1, 143 3, 66 425, 91 0, 26 97, 50 40, 00 0, 00 1677, 538 0, 392 3, 66 152, 67 0, 28 107, 38 40, 00 0, 00 1677, 931 1, 143 5, 64 451, 54 0, 28 109, 29 40, 00 0, 00 1679, 973 1, 143 5, 64 451, 80 0, 28 113, 92 40, 00 0, 00 1680, 216 1, 143 5, 64 472, 06 0, 29								
1671. 647 1. 143 1. 44 389. 22 0. 24 81. 45 40. 00 0. 00 1672. 790 1. 143 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1673. 932 0. 179 1. 44 63. 82 0. 25 91. 73 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1676. 396 1. 143 3. 66 437. 03 0. 27 102. 42 40. 00 0. 00 1677. 538 0. 392 3. 66 152. 67 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 107. 38 40. 00 0. 00 1680. 216 1. 143 5. 64 451. 54 0. 28 113. 62 40. 00 0. 00 1681. 358 0. 646 5. 64 271. 31 0. 29	1670. 136	0. 369	-0.81	119.01			40.00	0.00
1671. 647 1. 143 1. 44 389. 22 0. 24 81. 45 40. 00 0. 00 1672. 790 1. 143 1. 44 401. 30 0. 25 86. 71 40. 00 0. 00 1673. 932 0. 179 1. 44 63. 82 0. 25 91. 73 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1676. 396 1. 143 3. 66 437. 03 0. 27 102. 42 40. 00 0. 00 1677. 538 0. 392 3. 66 152. 67 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 107. 38 40. 00 0. 00 1680. 216 1. 143 5. 64 451. 54 0. 28 113. 61 40. 00 0. 00 1681. 358 0. 646 5. 64 271. 31 0. 29	1670. 504	1. 143	1. 44	377. 14	0. 23	75. 93	40. 00	0. 00
1672.790 1. 143 1. 44 401.30 0. 25 86. 71 40.00 0.00 1673.932 0. 179 1. 44 63.82 0. 25 91.73 40.00 0.00 1674.111 1. 143 3. 66 414.79 0. 26 92.63 40.00 0.00 1675.253 1. 143 3. 66 425.91 0. 26 97.50 40.00 0.00 1676.396 1. 143 3. 66 437.03 0. 27 102.42 40.00 0.00 1677.931 1. 143 5. 64 451.54 0. 28 107.38 40.00 0.00 1680.216 1. 143 5. 64 461.80 0. 28 113.92 40.00 0.00 1681.358 0. 646 5. 64 271.31 0. 29 112.61 40.00 0.00 1682.004 1. 143 7. 23 487.76 0. 30 125.93 40.00 0.00 1685.429 1. 143 7. 23 497.32 0. 30 125.93 40.00		1 1/3	1 11	380 22			40.00	
1673. 932 0. 179 1. 44 63. 82 0. 25 91. 73 40. 00 0. 00 1674. 111 1. 143 3. 66 414. 79 0. 26 92. 63 40. 00 0. 00 1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1677. 538 0. 392 3. 66 152. 67 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 109. 29 40. 00 0. 00 1680. 216 1. 143 5. 64 451. 54 0. 28 113. 92 40. 00 0. 00 1681. 358 0. 646 5. 64 472. 06 0. 29 118. 61 40. 00 0. 00 1682. 304 1. 143 7. 23 487. 76 0. 30 125. 93 40. 00 0. 00 1684. 329 1. 143 7. 23 487. 76 0. 30 135. 22 40. 00 0. 00 1684. 289 1. 143 7. 23 516. 44 0. 31								
1674.111 1.143 3.66 414.79 0.26 92.63 40.00 0.00 1675.253 1.143 3.66 425.91 0.26 97.50 40.00 0.00 1676.396 1.143 3.66 425.91 0.26 97.50 40.00 0.00 1677.538 0.392 3.66 152.67 0.28 107.38 40.00 0.00 1679.073 1.143 5.64 451.54 0.28 109.29 40.00 0.00 1680.216 1.143 5.64 461.80 0.28 113.92 40.00 0.00 1681.358 0.646 5.64 271.31 0.29 118.61 40.00 0.00 1682.004 1.143 7.23 487.76 0.30 125.93 40.00 0.00 1683.147 1.143 7.23 497.32 0.30 130.42 40.00 0.00 1684.289 1.143 7.23 506.88 0.30 135.92 40.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1676. 396 1. 143 3. 66 437. 03 0. 27 102. 42 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 107. 38 40. 00 0. 00 1679. 073 1. 143 5. 64 461. 80 0. 28 113. 92 40. 00 0. 00 1680. 216 1. 143 5. 64 461. 80 0. 29 118. 61 40. 00 0. 00 1681. 358 0. 646 5. 64 271. 31 0. 29 118. 61 40. 00 0. 00 1682. 004 1. 143 7. 23 487. 76 0. 30 125. 93 40. 00 0. 00 1683. 147 1. 143 7. 23 487. 76 0. 30 135. 22 40. 00 0. 00 1685. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 429 1. 143 7. 23 516. 44 0. 31 <td>1673. 932</td> <td>0. 179</td> <td>1. 44</td> <td>63. 82</td> <td>0. 25</td> <td>91. 73</td> <td>40. 00</td> <td>0. 00</td>	1673. 932	0. 179	1. 44	63. 82	0. 25	91. 73	40. 00	0. 00
1675. 253 1. 143 3. 66 425. 91 0. 26 97. 50 40. 00 0. 00 1676. 396 1. 143 3. 66 437. 03 0. 27 102. 42 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 107. 38 40. 00 0. 00 1679. 073 1. 143 5. 64 461. 80 0. 28 113. 92 40. 00 0. 00 1680. 216 1. 143 5. 64 461. 80 0. 29 118. 61 40. 00 0. 00 1681. 358 0. 646 5. 64 271. 31 0. 29 118. 61 40. 00 0. 00 1682. 004 1. 143 7. 23 487. 76 0. 30 125. 93 40. 00 0. 00 1683. 147 1. 143 7. 23 497. 32 0. 30 130. 42 40. 00 0. 00 1685. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 432 1. 34 7. 23 616. 42 0. 31 <td>1674 111</td> <td>1 143</td> <td>3 66</td> <td>414 79</td> <td>0.26</td> <td>92 63</td> <td>40 00</td> <td>0 00</td>	1674 111	1 143	3 66	414 79	0.26	92 63	40 00	0 00
1676.396 1.143 3.66 437.03 0.27 102.42 40.00 0.00 1677.538 0.392 3.66 152.67 0.28 107.38 40.00 0.00 1677.931 1.143 5.64 451.54 0.28 109.29 40.00 0.00 1680.216 1.143 5.64 461.80 0.28 113.92 40.00 0.00 1681.358 0.646 5.64 472.06 0.29 118.61 40.00 0.00 1682.004 1.143 7.23 487.76 0.30 125.93 40.00 0.00 1683.147 1.143 7.23 497.32 0.30 130.42 40.00 0.00 1685.432 1.143 7.23 506.88 0.30 135.22 40.00 0.00 1686.799 1.143 9.12 526.71 0.31 143.01 40.00 0.00 1687.852 1.143 9.12 535.43 0.32 147.11 40.00 0.00								
1677. 538 0. 392 3. 66 152. 67 0. 28 107. 38 40. 00 0. 00 1677. 931 1. 143 5. 64 451. 54 0. 28 109. 29 40. 00 0. 00 1680. 216 1. 143 5. 64 461. 80 0. 28 113. 92 40. 00 0. 00 1681. 358 0. 646 5. 64 271. 31 0. 29 123. 38 40. 00 0. 00 1682. 004 1. 143 7. 23 487. 76 0. 30 125. 93 40. 00 0. 00 1683. 147 1. 143 7. 23 497. 32 0. 30 130. 42 40. 00 0. 00 1684. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 574 0. 135 7. 23 61. 62 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1687. 852 1. 143 9. 12 526. 71 0. 31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1677. 931 1, 143 5, 64 451. 54 0, 28 109, 29 40, 00 0, 00 1679. 073 1, 143 5, 64 461. 80 0, 28 113, 92 40, 00 0, 00 1680, 216 1, 143 5, 64 472. 06 0, 29 118, 61 40, 00 0, 00 1681, 358 0, 646 5, 64 271. 31 0, 29 123, 38 40, 00 0, 00 1682, 004 1, 143 7, 23 487, 76 0, 30 125, 93 40, 00 0, 00 1683, 147 1, 143 7, 23 506, 88 0, 30 135, 22 40, 00 0, 00 1684, 289 1, 143 7, 23 516, 44 0, 31 139, 60 40, 00 0, 00 1685, 432 1, 143 7, 23 516, 64 0, 31 143, 01 40, 00 0, 00 1686, 709 1, 143 9, 12 526, 71 0, 31 143, 01 40, 00 0, 00 1687, 852 1, 143 9, 12 535, 43 0, 32 </td <td></td> <td></td> <td>3. 66</td> <td>437.03</td> <td></td> <td></td> <td></td> <td>0.00</td>			3. 66	437.03				0.00
1677. 931 1, 143 5, 64 451. 54 0, 28 109, 29 40, 00 0, 00 1679. 073 1, 143 5, 64 461. 80 0, 28 113, 92 40, 00 0, 00 1680, 216 1, 143 5, 64 472. 06 0, 29 118, 61 40, 00 0, 00 1681, 358 0, 646 5, 64 271. 31 0, 29 123, 38 40, 00 0, 00 1682, 004 1, 143 7, 23 487, 76 0, 30 125, 93 40, 00 0, 00 1683, 147 1, 143 7, 23 506, 88 0, 30 135, 22 40, 00 0, 00 1684, 289 1, 143 7, 23 516, 44 0, 31 139, 60 40, 00 0, 00 1685, 432 1, 143 7, 23 516, 64 0, 31 143, 01 40, 00 0, 00 1686, 709 1, 143 9, 12 526, 71 0, 31 143, 01 40, 00 0, 00 1687, 852 1, 143 9, 12 535, 43 0, 32 </td <td>1677 538</td> <td>0 392</td> <td>3 66</td> <td>152 67</td> <td>0.28</td> <td>107 38</td> <td>40 00</td> <td>0 00</td>	1677 538	0 392	3 66	152 67	0.28	107 38	40 00	0 00
1679,073 1,143 5,64 461,80 0,28 113,92 40,00 0,00 1680,216 1,143 5,64 472,06 0,29 118,61 40,00 0,00 1681,358 0,646 5,64 271,31 0,29 123,38 40,00 0,00 1682,004 1,143 7,23 487,76 0,30 125,93 40,00 0,00 1683,147 1,143 7,23 497,32 0,30 130,42 40,00 0,00 1684,289 1,143 7,23 506,88 0,30 135,22 40,00 0,00 1685,432 1,143 7,23 516,44 0,31 139,60 40,00 0,00 1686,574 0,135 7,23 61,62 0,31 143,01 40,00 0,00 1687,852 1,143 9,12 535,43 0,32 147,11 40,00 0,00 1688,994 1,143 9,12 535,43 0,32 150,96 40,00 0,00 <								
1680. 216 1. 143 5. 64 472. 06 0. 29 118. 61 40. 00 0. 00 1681. 358 0. 646 5. 64 271. 31 0. 29 123. 38 40. 00 0. 00 1682. 004 1. 143 7. 23 487. 76 0. 30 125. 93 40. 00 0. 00 1683. 147 1. 143 7. 23 497. 32 0. 30 130. 42 40. 00 0. 00 1684. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 532 1. 143 7. 23 516. 44 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1687. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1688. 994 1. 143 9. 12 535. 43 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1697. 878 1. 143 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
1681, 358 0. 646 5. 64 271, 31 0. 29 123, 38 40, 00 0. 00 1682, 004 1. 143 7. 23 487, 76 0. 30 125, 93 40, 00 0. 00 1683, 147 1, 143 7. 23 506, 88 0. 30 130, 42 40, 00 0. 00 1684, 289 1, 143 7. 23 506, 88 0. 30 135, 22 40, 00 0. 00 1685, 432 1, 143 7. 23 516, 44 0. 31 139, 60 40, 00 0. 00 1686, 574 0, 135 7. 23 61, 62 0. 31 143, 01 40, 00 0. 00 1686, 799 1, 143 9, 12 526, 71 0. 31 143, 41 40, 00 0. 00 1687, 852 1, 143 9, 12 535, 43 0. 32 150, 96 40, 00 0. 00 1688, 994 1, 143 9, 12 544, 15 0. 32 150, 96 40, 00 0. 00 1690, 736 1, 143 11, 46 556, 93 0. 32 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1681, 358 0. 646 5. 64 271, 31 0. 29 123, 38 40, 00 0. 00 1682, 004 1. 143 7. 23 487, 76 0. 30 125, 93 40, 00 0. 00 1683, 147 1. 143 7. 23 497, 32 0. 30 130, 42 40, 00 0. 00 1684, 289 1. 143 7. 23 506, 88 0. 30 135, 22 40, 00 0. 00 1685, 432 1. 143 7. 23 516, 44 0. 31 139, 60 40, 00 0. 00 1686, 574 0. 135 7. 23 61, 62 0. 31 143, 01 40, 00 0. 00 1686, 574 0. 135 7. 23 61, 62 0. 31 143, 01 40, 00 0. 00 1686, 574 0. 135 7. 23 61, 62 0. 31 143, 01 40, 00 0. 00 1687, 852 1. 143 9. 12 535, 43 0. 32 147, 11 40, 00 0. 00 1688, 994 1. 143 9. 12 544, 15 0. 32 150, 96 40, 00 0. 00 1690, 736 1. 143 1	1680. 216	1. 143	5. 64	472. 06	0. 29	118. 61	40. 00	0.00
1682. 004 1. 143 7. 23 487. 76 0. 30 125. 93 40. 00 0. 00 1683. 147 1. 143 7. 23 497. 32 0. 30 130. 42 40. 00 0. 00 1684. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 432 1. 143 7. 23 516. 44 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1686. 709 1. 143 9. 12 526. 71 0. 31 143. 01 40. 00 0. 00 1687. 852 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1688. 994 1. 143 9. 12 535. 43 0. 32 150. 96 40. 00 0. 00 1690. 736 1. 143 91. 2 288. 64 0. 32 154. 98 40. 00 0. 00 1691. 878 1. 143 11. 46 554. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1683. 147 1. 143 7. 23 497. 32 0. 30 130. 42 40. 00 0. 00 1684. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 432 1. 143 7. 23 516. 44 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1686. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1687. 852 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1691. 878 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1694. 163 0. 349 11. 46 572. 28 0. 33 160. 92 40. 00 0. 00 1694. 512 1. 143 <								
1684. 289 1. 143 7. 23 506. 88 0. 30 135. 22 40. 00 0. 00 1685. 432 1. 143 7. 23 516. 44 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1686. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 534. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349								
1685. 432 1. 143 7. 23 516. 44 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1686. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 3	1683. 147	1. 143	7. 23	497. 32	0. 30	130. 42	40. 00	0. 00
1685. 432 1. 143 7. 23 516. 44 0. 31 139. 60 40. 00 0. 00 1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1686. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 3	1684 289	1 143	7 23	506 88	0.30	135 22	40 00	0 00
1686. 574 0. 135 7. 23 61. 62 0. 31 143. 01 40. 00 0. 00 1686. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0.								
1686. 709 1. 143 9. 12 526. 71 0. 31 143. 41 40. 00 0. 00 1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0								
1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119	1686. 574	0. 135		61. 62			40.00	0.00
1687. 852 1. 143 9. 12 535. 43 0. 32 147. 11 40. 00 0. 00 1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1693. 021 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119	1686, 709	1. 143	9. 12	526, 71	0. 31	143.41	40.00	0.00
1688. 994 1. 143 9. 12 544. 15 0. 32 150. 96 40. 00 0. 00 1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143								
1690. 137 0. 599 9. 12 288. 64 0. 32 154. 98 40. 00 0. 00 1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1699. 201 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1701. 486 0. 343								
1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1700. 344 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1701. 486 0. 343					0.32			
1690. 736 1. 143 11. 46 556. 93 0. 32 157. 24 40. 00 0. 00 1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1700. 344 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1701. 486 0. 343	1690. 137	0. 599	9. 12	288. 64	0. 32	154. 98	40. 00	0. 00
1691. 878 1. 143 11. 46 564. 60 0. 33 160. 92 40. 00 0. 00 1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1700. 344 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1701. 486 0. 343 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 829 1. 143								
1693. 021 1. 143 11. 46 572. 28 0. 33 164. 33 40. 00 0. 00 1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1702. 972 1. 143								
1694. 163 0. 349 11. 46 176. 29 0. 33 167. 49 40. 00 0. 00 1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143								
1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00		1. 143	11. 46			164. 33	40.00	0.00
1694. 512 1. 143 14. 06 581. 71 0. 33 168. 58 40. 00 0. 00 1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00	1694, 163	0.349	11. 46	176, 29	0. 33	167, 49	40.00	0.00
1695. 655 1. 143 14. 06 588. 20 0. 33 171. 58 40. 00 0. 00 1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1704. 114 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00								
1696. 797 1. 143 14. 06 594. 69 0. 34 174. 36 40. 00 0. 00 1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1704. 114 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00								
1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00								
1697. 940 0. 119 14. 06 62. 19 0. 34 176. 92 40. 00 0. 00 1698. 059 1. 143 16. 61 601. 27 0. 34 177. 27 40. 00 0. 00 1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00	1696. 797	1. 143	14. 06	594. 69	0. 34	174. 36	40. 00	0. 00
1698.059 1.143 16.61 601.27 0.34 177.27 40.00 0.00 1699.201 1.143 16.61 606.57 0.34 179.64 40.00 0.00 1700.344 1.143 16.61 611.88 0.34 181.94 40.00 0.00 1701.486 0.343 16.61 184.64 0.34 184.19 40.00 0.00 1701.829 1.143 19.09 618.18 0.34 185.05 40.00 0.00 1702.972 1.143 19.09 622.31 0.34 187.01 40.00 0.00 1704.114 1.143 19.09 626.43 0.34 188.77 40.00 0.00		0 110	14 06	62 19				
1699. 201 1. 143 16. 61 606. 57 0. 34 179. 64 40. 00 0. 00 1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00								
1700. 344 1. 143 16. 61 611. 88 0. 34 181. 94 40. 00 0. 00 1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00								
1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00		1. 143	16. 61	606. 57			40.00	0.00
1701. 486 0. 343 16. 61 184. 64 0. 34 184. 19 40. 00 0. 00 1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00	1700. 344	1. 143	16, 61	611, 88	0.34	181. 94	40.00	0.00
1701. 829 1. 143 19. 09 618. 18 0. 34 185. 05 40. 00 0. 00 1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00								
1702. 972 1. 143 19. 09 622. 31 0. 34 187. 01 40. 00 0. 00 1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00								
1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00								
1704. 114 1. 143 19. 09 626. 43 0. 34 188. 77 40. 00 0. 00	1702. 972	1. 143	19. 09	622. 31	0. 34	187. 01	40. 00	0. 00
1705. 257 0. 125 19. 09 68. 71 0. 35 190. 34 40. 00 0. 00								
	1705. 257	U. 125	19.09	08. / I	0.35	190. 34	40.00	0.00

Pagi na 15

1705. 382 1706. 524 1707. 667 1708. 809 1709. 146 1710. 289 1711. 431 1711. 574 1713. 145 1714. 287 1715. 430 1716. 572 1717. 715 1717. 746 1718. 889 1720. 031 1721. 174 1721. 822 1722. 965 1724. 107 1725. 250 1725. 688 1726. 830 1727. 973 1729. 379 1730. 522 1731. 664 1732. 807 1733. 199 1733. 199 1734. 342 1735. 484 1736. 627 1736. 893 1738. 036 1739. 178 1740. 742 1741. 884 1740. 742 1741. 884	1. 143 1. 143	21. 48 21. 48 21. 48 23. 54 23. 54 23. 54 23. 54 23. 57 25. 17 25. 17 25. 17 25. 17 26. 59 26. 59 26. 59 26. 59 28. 24 28. 24 28. 24 29. 99 29. 99 29. 99 29. 99 31. 70 31. 70 31. 70 33. 33 33. 33 33. 33 33. 33 34. 89 34. 89 34. 89 34. 89 36. 28 36. 28 36. 28 36. 28 36. 28 37. 42	630. 42 633. 37 636. 31 188. 18 639. 61 641. 51 643. 41 322. 16 645. 84 646. 89 647. 94 648. 99 17. 77 649. 69 650. 27 369. 12 650. 27 649. 65 649. 03 248. 80 647. 68 644. 46 148. 42 641. 98 639. 37 636. 76 649. 37 636. 76 629. 15 629. 15 620. 61 610. 69 599. 19 593. 69 318. 25 584. 84	0. 35 0. 35	190. 56 191. 92 193. 19 194. 37 194. 75 195. 69 196. 54 197. 67 198. 25 198. 78 199. 21 199. 46 199. 74 199. 75 199. 71 199. 50 199. 71 199. 50 199. 19 198. 77 198. 54 197. 88 197. 18 196. 05 194. 98 193. 78 194. 98 193. 78 194. 98 195. 45 196. 05 194. 98 193. 78 196. 05 194. 98 193. 78 196. 05 194. 98 193. 78 196. 05 194. 98 193. 78 196. 05 194. 98 193. 78 196. 05 194. 98 195. 32 176. 96 174. 45 176. 35	40. 00 40. 00	0. 00 0.
1743. 027 1744. 170	1. 143 0. 617 1. 143 1. 143 1. 143 1. 076	36. 28 36. 28	593. 69 318. 25 584. 84 578. 57 572. 30 533. 15	0. 34 0. 33	174. 45 171. 78	40. 00 40. 00	0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
1749. 290 1750. 432	1. 143 1. 143	39. 14 39. 14	559. 51 552. 04	0. 32	158. 65	40.00	0. 00 0. 00

Pagi na 16

1751. 575 1752. 718	1. 143 0. 556	39. 14 39. 14	544. 56 262. 32	0. 32 0. 32	151. 75 148. 45	40. 00 40. 00	0. 00 0. 00
1753. 274 1754. 416	1. 143 1. 143	41. 07 41. 07	532. 73 523. 82	0. 31 0. 31	146. 60 142. 62	40. 00 40. 00	0. 00 0. 00
1755. 559	1. 143	41. 07	514. 91	0. 31	138. 55	40.00	0.00
1756. 701 1757. 081	0. 380 1. 143	41. 07 43. 06	169. 41 502. 26	0. 30 0. 30	134. 40 132. 75	40. 00 40. 00	0. 00 0. 00
1757. 061	1. 143 1. 143	43.06	491. 78	0.30	132. 73	40. 00 40. 00	0.00
1759. 367	1. 143	43.06	481. 31	0. 29	123. 44	40.00	0.00
1760. 509 1760. 720	0. 211 1. 143	43. 06 44. 93	87. 58 468. 12	0. 29 0. 29	118. 69 117. 66	40. 00 40. 00	0. 00 0. 00
1761. 862	1. 143	44. 93	456. 09	0. 28	117. 53	40.00	0.00
1763. 005	1. 143	44. 93	444. 05	0. 27	107. 08	40.00	0.00
1764. 147 1764. 535	0. 387 1. 143	44. 93 47. 16	147. 83 426. 93	0. 27 0. 26	101. 29 99. 03	40. 00 40. 00	0. 00 0. 00
1765. 677	1. 143	47. 16	412. 88	0. 26	93.00	40. 00	0.00
1766. 820	1. 143	47. 16	398. 84	0. 25	86. 54	40.00	0.00
1767. 962 1768. 615	0. 653 1. 143	47. 16 48. 83	221. 66 375. 96	0. 24 0. 23	79. 62 75. 72	40. 00 40. 00	0. 00 0. 00
1769. 758	1. 143	48.83	360. 30	0. 22	68. 59	40.00	0.00
1770. 901 1772. 043	1. 143	48. 83 48. 83	344. 64 328. 97	0. 20 0. 19	60. 65 53. 19	40.00	0.00
1772. 043 1773. 186	1. 143 0. 143	48. 83 48. 83	40. 03	0. 19 0. 17	47. 05	40. 00 40. 00	0. 00 0. 00
1773. 329	1. 143	50. 22	310. 64	0. 17	46. 26	40.00	0.00
1774. 471 1775. 614	1. 143 1. 143	50. 22 50. 22	293. 56 276. 48	0. 15 0. 13	39. 04 30. 65	40. 00 40. 00	0. 00 0. 00
1775. 014	1. 143	50. 22	259. 39	0. 13 0. 10	22. 52	40. 00	0.00
1777. 899	0. 001	50. 22	0. 28	0. 07	15. 91	40.00	0.00
1777. 900 1779. 043	1. 143 1. 117	50. 22 50. 22	241. 85 219. 05	0. 07 0. 05	15. 90 10. 44	40. 00 40. 00	0. 00 0. 00
1780. 159	0. 585	50. 22	107. 85	0. 02	6. 22	40.00	0.00
1780. 745	1. 143	50. 89	196. 86	0. 02	4. 38	40.00	0.00
1781. 887 1782. 000	0. 113 1. 143	50. 89 50. 89	18. 46 177. 37	0. 00 0. 00	1. 74 1. 64	40. 00 40. 00	0. 00 0. 00
1783. 143	1. 143	50.89	159. 62	0.00	0. 71	40.00	0.00
1784. 285 1785. 428	1. 143 1. 143	50. 89 50. 89	141. 87 124. 13	0. 00 0. 00	0. 20 0. 04	40.00	0. 00 0. 00
1785. 428	1. 143 1. 143	50. 89 50. 89	124. 13 106. 38	0.00	0.04	40. 00 40. 00	0.00
1787. 713	0. 166	50.89	14.00	0.00	0.00	40.00	0.00
1787. 879 1789. 022	1. 143 1. 143	50. 89 50. 89	86. 05 68. 31	0. 00 0. 00	0. 00 0. 00	37. 00 37. 00	0. 00 0. 00
1790. 164	1. 143	50. 89	50. 56	0.00	0.00	37. 00	0.00
1791. 307	1. 143	50. 89	32.82	0.00	0.00	37. 00	0.00
1792. 449 1793. 592	1. 143 0. 399	50. 89 50. 89	15. 07 1. 08	0. 00 0. 00	0. 00 0. 00	37. 00 37. 00	0. 00 0. 00
			* * * *				

LEGENDA SIMBOLI

X(m): Ascissa sinistra concio dx(m)

: Larghezza conci o

: Angol o pendenza base conci o al pha(°)

W(kN/m) : Forza peso concio

: Coefficiente locale pressione interstiziale ru(-) : Pressione totale dei pori base concio U(kPa)

: Angolo di attrito efficace base concio phi ' (°)

c'/Cu (kPa) : Coesione efficace o Resistenza al taglio in condizioni non drenate

TABELLA DIAGRAMMA DELLE FORZE DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X ht E(x)T(x)FS_p-qFEM rho(x) FS_FEM (--) (m) (kN/m) (kN/m) (m) (m) (kN) 1637. 265 0.000 415.216 -0.050 0.000000000E+000 0.00000000E+000 3. 3038303934E-001 0.042 4.715 0. 946 1638, 407 0. 119 415, 158 -0.050 5. 0498218373E-001 1. 0236980810E-003 5. 5357442457E-001 0.946 0.042 4.715 1639. 550 0. 239 415. 101 -0.0491. 2649713734E+000 6. 4384307420E-003 8. 3311964635E-001 0.0424.690 0.946 1640. 692 0.362 415.046 -0.0462. 4087415636E+000 2. 3310684601E-002 1. 2538302247E+000 4.608 0. 946 0.042 1641.835 0.489 414, 996 -0.0421.8869921496E+000 4. 1300953221E+000 6. 8737169039E-002 0.0424.471 0. 959 1642, 977 0.619 414.949 -0.0426. 7207020606E+000 1. 7836585440E-001 2. 8398895659E+000 0.044 4. 333 1. 012 4. 2739832005E+000 1644. 120 0.747 414. 900 -0.0401. 0619519047E+001 4. 1406267447E-001 4.219 1. 152 0.065 1645. 262 0.882 414.858 -0.0281. 6487169149E+001 8. 5344419901E-001 6. 4322685703E+000 0.0874. 154 1. 345 1646, 405 1.038 414.837 -0.010 2. 5317878014E+001 1.5866926430E+000 9.6804495993E+000 1. 527 0. 105 4. 107 1647. 548 1. 214 414.835 0.007 3.8607937525E+001 2. 8190958113E+000 1. 4568904177E+001 4.054 1. 701 0.122 1648, 690 1.409 414.853 0.016 5.8609240309E+001 4. 9269840321E+000 2. 1615782844E+001 3.998 1.862 0. 141 1.509 1649, 271 414.863 0.014 7. 2388545885E+001 6. 4721804957E+000 2.6641001264E+001 0.150 3.968 2.057 1650, 390 1. 697 414.878 0.014 3. 9325975095E+001 1. 0850714544E+002 1. 0863841038E+001 3.883 2. 156 0. 166 1650, 560 1. 727 414.881 0.026 1. 1537437968E+002 1. 1741370800E+001 4. 1747810328E+001 3.866 2. 168 0. 169

1/51 0/0	1 055 414 000	0.005	4 40/45//0005 000	4 (407000075 004	F 44000F0000F 004
1651. 262 0. 179 3. 800	1. 855 414. 900 2. 204	0. 035	1. 4861566898E+002	1. 6187209287E+001	5. 4488052832E+001
1652. 405	2. 058 414. 945	0.044	2. 2416891622E+002	2. 7025056230E+001	8. 3698644151E+001
0. 196 3. 676 1653. 547	2. 234 2. 271 415. 001	0. 053	3. 3987520725E+002	4. 4760411323E+001	1. 0252677572E+002
0. 213 3. 544 1654. 500	2. 250 2. 457 415. 055	0. 065	4. 3854376777E+002	6. 1718657596E+001	1. 0851945441E+002
0. 226 3. 426 1655. 643	2. 261 2. 696 415. 137	0. 076	5. 6930888910E+002	8. 6624966591E+001	1. 2465646689E+002
0. 243 3. 265 1656. 785	2. 259 2. 946 415. 228	0. 083	7. 2339591252E+002	1. 1831324238E+002	1. 3741044391E+002
0. 261 3. 105 1657. 526	2. 247 3. 113 415. 293	0. 090	8. 2637509190E+002	1. 4130235579E+002	1. 4693439101E+002
0. 272 3. 009 1658. 059	2. 234 3. 237 415. 343	0. 104	9. 0781589867E+002	1. 5993206300E+002	1. 5316384406E+002
0. 280	2. 221 3. 478 415. 466	0. 115	1. 0841733270E+003	2. 0377975927E+002	1. 5793573768E+002
0. 299 2. 796 1660. 344	2. 183 3. 736 415. 605	0. 126	1. 2687144123E+003	2. 5349557960E+002	1. 5296169181E+002
0. 317 2. 662 1661. 487	2. 140 4. 002 415. 753	0. 134	1. 4337056623E+003	3. 0333137332E+002	1. 4127705530E+002
0. 336 2. 538 1662. 629	2. 092 4. 279 415. 912	0. 140	1. 5915462172E+003	3. 5564809030E+002	1. 4084773177E+002
0. 354	2. 041 4. 302 415. 926	0. 151	1. 6043333872E+003	3. 6004878319E+002	1. 4176139223E+002
0. 355 2. 417 1663. 863	2. 037 4. 547 416. 098	0. 155	1. 7763752300E+003	4. 2000166954E+002	1. 5463593208E+002
0. 374 2. 304 1665. 005	1. 983 4. 801 416. 280	0. 164	1. 9576915242E+003	4. 8631413691E+002	1. 6130743524E+002
0. 393 2. 198 1666. 148	1. 929 5. 066 416. 472	0. 174	2. 1449784003E+003	5. 5766412547E+002	1. 6559682194E+002
0. 411 2. 107 1666. 708	1. 876 5. 206 416. 577	0. 190	2. 2382527711E+003	5. 9400812805E+002	1. 6929679442E+002
0. 419	1. 850 5. 441 416. 796	0. 196	2. 4383847007E+003	6. 7311019120E+002	1. 7728983097E+002
0. 436	1. 800 5. 687 417. 026	0. 201	2. 6433772693E+003	7. 5736940971E+002	1. 8126315596E+002
0. 452	1. 753 5. 933 417. 255	0. 204	2. 8525886327E+003	8. 4661069255E+002	1. 8297609178E+002
0. 467	1. 709 6. 017 417. 334	0. 216	2. 9200013891E+003	8. 7587473945E+002	1. 8513987856E+002
0. 472	1. 695 6. 237 417. 582	0. 222	3. 1393500174E+003	9. 7370892113E+002	1. 9388573600E+002
0. 488	1. 654 6. 466 417. 841	0. 230	3. 3630491436E+003	1. 0774897959E+003	1. 9534739974E+002
0. 503 1. 697 1673. 932	1. 615 6. 706 418. 109	0. 236	3. 5857378156E+003 Pagi na 19	1. 1835383094E+003	1. 9119983688E+002

0. 518 1. 650	1. 580				
1674. 111	6. 745 418. 153	0. 243	3. 6197820209E+003	1. 1999075128E+003	1. 9092311328E+002
0. 520 1. 644 1675. 253	1. 575 6. 950 418. 430	0. 252	3. 8401318656E+003	1. 3086265613E+003	1. 9393349954E+002
0. 534	1. 544 7. 175 418. 729	0. 265	4. 0629389197E+003	1. 4223891371E+003	1. 9475033543E+002
0. 548	1. 514 7. 409 419. 036	0. 272	4. 2851553138E+003	1. 5394885894E+003	1. 9299669798E+002
0. 563 1. 528 1677. 931	1. 486				
0. 568 1. 515	1. 477	0. 275	4. 3606893755E+003	1. 5803317236E+003	1. 9336296080E+002
1679. 073 0. 581 1. 484	7. 694 419. 459 1. 452	0. 283	4. 5845426490E+003	1. 7015446533E+003	1. 9523263702E+002
1680. 216 0. 594 1. 454	7. 915 419. 793 1. 429	0. 296	4. 8068149297E+003	1. 8255371727E+003	1. 9225201694E+002
1681. 358	8. 145 420. 135	0. 305	5. 0238571966E+003	1. 9505454015E+003	1. 8533409218E+002
0. 607 1. 425 1682. 004	1. 407 8. 283 420. 337	0. 310	5. 1418356895E+003	2. 0207985631E+003	1. 8326436389E+002
0. 615 1. 410 1683. 147	1. 395 8. 490 420. 689	0. 315	5. 3523287138E+003	2. 1475532453E+003	1. 8211805985E+002
0. 627	1. 375 8. 714 421. 058	0. 325	5. 5579931601E+003	2. 2752774447E+003	1. 7772955494E+002
0. 639 1. 366	1. 357				
1685. 432 0. 651 1. 346	8. 944 421. 433 1. 339	0. 325	5. 7584580240E+003	2. 4030349297E+003	1. 7318080695E+002
1686. 574 0. 662 1. 329	9. 168 421. 801 1. 323	0. 325	5. 9537281389E+003	2. 5302189475E+003	1. 6071824459E+002
1686. 709	9. 197 421. 848	0. 340	5. 9752510658E+003	2. 5446173659E+003	1. 5945721784E+002
0. 663	1. 321 9. 401 422. 236	0. 342	6. 1568800049E+003	2. 6672119582E+003	1. 5624931557E+002
0. 675	1. 306 9. 611 422. 629	0. 342	6. 3322959409E+003	2. 7885754961E+003	1. 5131087815E+002
0. 686	1. 292 9. 816 423. 018	0. 348	6. 5026400705E+003	2. 9086901400E+003	1. 4208686398E+002
0. 697 1. 275	1. 279				
1690. 736 0. 702 1. 266	9. 937 423. 235 1. 272	0. 358	6. 5855151827E+003	2. 9686116782E+003	1. 3735881692E+002
1691. 878 0. 712 1. 249	10. 112	0. 357	6. 7401488216E+003	3. 0816606396E+003	1. 3215742826E+002
1693. 021	10. 290 424. 051	0. 363	6. 8875077534E+003	3. 1916099521E+003	1. 2523139289E+002
0. 721	1. 249 10. 477 424. 470	0. 367	7. 0263147281E+003	3. 2970412443E+003	1. 1483714393E+002
0. 730	1. 239 10. 536 424. 599	0. 377	7. 0656740706E+003	3. 3275704484E+003	1. 1198182554E+002
0. 733 1. 212 1695. 655	1. 236 10. 682 425. 032	0. 380	7. 1905358437E+003	3. 4252597420E+003	1. 0578492216E+002
0. 741 1. 199	1. 227	0. 300	7. 1700000437L+003	J. 42J2J7/42UL+UUJ	1. 03/0472210L+002

1696. 797	10. 832 425. 468	0. 392	7. 3074029012E+003	3. 5185714216E+003	9. 7857726518E+001
0. 748	11. 005 425. 927	0. 402	7. 4141502616E+003	3. 6061346201E+003	8. 5115095903E+001
0. 755	1. 210 11. 024	0. 397	7. 4241557361E+003	3. 6145245385E+003	8. 3950832235E+001
0. 756 1. 173	1. 209				
1699. 201 0. 763 1. 161		0. 394	7. 5167749991E+003	3. 6934253189E+003	7. 7567147917E+001
1700. 344 0. 770 1. 151	11. 243 426. 877 1. 195	0. 397	7. 6014042094E+003	3. 7674852301E+003	7. 0454707274E+001
1701. 486	11. 360 427. 335	0. 409	7. 6777708541E+003	3. 8364050908E+003	5. 9080803748E+001
0. 776	1. 188 11. 407 427. 484	0. 417	7. 6972286530E+003	3. 8550419268E+003	5. 5928902735E+001
0. 778	1. 186 11. 481 427. 954	0. 414	7. 7579931516E+003	3. 9140389411E+003	4. 9711876350E+001
0. 784 1. 128	1. 180				
1704. 114 0. 789 1. 119	11. 562 428. 429 1. 175	0. 420	7. 8108251230E+003	3. 9669090462E+003	4. 2796025389E+001
1705. 257	11. 650 428. 913	0. 424	7. 8557862299E+003	4. 0142827731E+003	3. 5243671574E+001
0. 793	11. 660 428. 966	0. 445	7. 8601309730E+003	4. 0190494410E+003	3. 4130916812E+001
0. 794	1. 169 11. 721 429. 477	0. 453	7. 8921875330E+003	4. 0580006787E+003	2. 4615212779E+001
0. 798 1. 103	1. 164				
1707. 667 0. 802 1. 096	11. 797 430. 002 1. 159	0. 463	7. 9163791270E+003	4. 0907939083E+003	1. 7901308371E+001
1708. 809	11. 881 430. 536	0. 466	7. 9330937628E+003	4. 1182710639E+003	1. 1274885915E+001
0. 806	11. 904 430. 692	0. 472	7. 9365589117E+003	4. 1251801237E+003	8. 9208421097E+000
0. 807 1. 088 1710. 289	1. 153 11. 950 431. 235	0. 476	7. 9414621167E+003	4. 1444699374E+003	-1. 9902929118E-001
0. 811 1. 083 1711. 431		0. 480	7 02410411055.002	4 1E41224E42E.002	7 72250470025.000
0. 814 1. 078		0. 480	7. 9361041105E+003	4. 1561236543E+003	-7. 7325047893E+000
1712. 574 0. 817 1. 074	12. 051 432. 331 1. 140	0. 488	7. 9237925916E+003	4. 1626663318E+003	-1. 3751619129E+001
1713. 145	12. 085 432. 614	0. 491	7. 9150942446E+003	4. 1639166164E+003	-1. 7591138083E+001
0. 818	12. 106 433. 171	0. 495	7. 8896151451E+003	4. 1606882359E+003	-2. 5539141906E+001
0. 821 1. 068 1715. 430	1. 135 12. 142 433. 745	0. 494	7. 8567348227E+003	4. 1515683026E+003	-3. 1508374938E+001
0. 822 1. 064 1716. 572	1. 131	0. 487			
0. 823 1. 061	1. 127		7. 8176154454E+003	4. 1376778166E+003	-3. 7624895419E+001
1717. 715 0. 823 1. 058	12. 181 434. 857 1. 123	0. 487	7. 7707582792E+003	4. 1180291444E+003	-4. 5073679527E+001
1717. 746	12. 181 434. 873	0. 505	7. 7693456025E+003	4. 1173732847E+003	-4. 5265261724E+001
			Pagi na 21		

0. 823 1. 058	1. 123				
1718. 889	12. 187 435. 450	0. 505	7. 7142701968E+003	4. 0911055072E+003	-5. 0744429341E+001
0. 824 1. 054 1720. 031	12. 192 436. 027	0. 505	7. 6533896485E+003	4. 0603756738E+003	-5. 5755583975E+001
0. 825 1. 051 1721. 174	1. 116 12. 197 436. 604	0. 505	7. 5868632674E+003	4. 0252335803E+003	-6. 2191367590E+001
0. 826 1. 047 1721. 822	1. 113 12. 200 436. 932	0. 519	7. 5450841803E+003	4. 0019252466E+003	-6. 5521965463E+001
0. 826 1. 045	1. 111				
1722. 965 0. 825 1. 041	12. 189 437. 534 1. 108	0. 527	7. 4680462224E+003	3. 9581371970E+003	-6. 9656935691E+001
1724. 107	12. 178 438. 137	0. 527	7. 3859113109E+003	3. 9103596442E+003	-7. 4040371647E+001
0. 824 1. 036 1725. 250	12. 166 438. 739	0. 527	7. 2988567757E+003	3. 8585232435E+003	-7. 6949155691E+001
0. 823 1. 032 1725. 688	12. 162 438. 970	0. 545	7. 2650050454E+003	3. 8378069755E+003	-7. 8480064585E+001
0. 822 1. 030 1726. 830	1. 100 12. 132 439. 600	0. 551	7. 1716414752E+003	3. 7803647819E+003	-8. 3773409354E+001
0. 820 1. 026	1. 097				
1727. 973 0. 818 1. 023	12. 103 440. 230 1. 094	0. 551	7. 0735746613E+003	3. 7193255126E+003	-8. 7606519086E+001
1729. 116	12. 073 440. 860	0. 551	6. 9714520628E+003	3. 6551437632E+003	-9. 0361807570E+001
0. 816 1. 019 1729. 379	12. 066 441. 005	0. 571	6. 9475786245E+003	3. 6397759023E+003	-9. 1549248246E+001
0. 815 1. 018 1730. 522	1. 091 12. 018	0. 571	6. 8382174295E+003	3. 5698673596E+003	-9. 7589929273E+001
0. 813 1. 014	1. 088				
1731. 664 0. 810 1. 010	11. 960 442. 310 1. 085	0. 556	6. 7245761494E+003	3. 4967825251E+003	-1. 0108171560E+002
1732. 807	11. 878 442. 933	0. 550	6. 6072358832E+003	3. 4209127833E+003	-1. 0154372268E+002
0. 807 1. 007 1733. 199	1. 083 11. 856 443. 154	0. 557	6. 5675571667E+003	3. 3948887064E+003	-1. 0334258003E+002
0. 806 1. 006 1734. 342	1. 082 11. 739 443. 788	0. 559	6. 4421755787E+003	3. 3139143541E+003	-1. 1139701961E+002
0. 802 1. 002	1. 079				
1735. 484 0. 798	11. 630 444. 430 1. 077	0. 565	6. 3130041480E+003	3. 2303828953E+003	-1. 1465174094E+002
1736. 627	11. 527 445. 079	0. 573	6. 1801852053E+003	3. 1443956494E+003	-1. 1415537515E+002
0. 793	11. 511 445. 238	0. 568	6. 1498808075E+003	3. 1246465602E+003	-1. 1541117904E+002
0. 792	1. 074 11. 356 445. 880	0. 567	6. 0094781080E+003	3. 0336179752E+003	-1. 2467557690E+002
0. 788 0. 992	1. 072	0. 307	0.0094761060E+003	3. 03301/9/32E+003	-1. 240/33/090E+002
1739. 178 0. 783	11. 212 446. 533 1. 070	0. 578	5. 8649849946E+003	2. 9398703262E+003	-1. 2791585366E+002
1740. 321	11. 084 447. 202	0. 589	5. 7171779476E+003	2. 8441577302E+003	-1. 2977833593E+002
0. 777 0. 986	1. 067				

Pagi na 22

1740. 742	11. 042 447. 453	0. 596	5. 6624786377E+003	2. 8086864074E+003	-1. 3134316978E+002
0. 775	1. 067 10. 885 448. 134	0. 606	5. 5080314107E+003	2. 7088594128E+003	-1. 3548701164E+002
0. 769 0. 983	1. 064				
1743. 027 0. 763	10. 750 448. 838 1. 062	0. 624	5. 3528776454E+003	2. 6083249866E+003	-1. 3690867885E+002
1744. 170	10. 632 449. 559	0. 635	5. 1951817706E+003	2. 5066506294E+003	-1. 3965872104E+002
0. 756	1. 060 10. 575 449. 954	0. 650	5. 1084874838E+003	2. 4511265983E+003	-1. 4105956286E+002
0. 752	1. 059 10. 448 450. 702	0. 665	4. 9462265434E+003	2. 3468178007E+003	-1. 4294890640E+002
0. 745	1. 058 10. 345 451. 473	0. 681	4. 7818353366E+003	2. 2419831736E+003	-1. 4473720337E+002
0. 737 0. 971	1. 056				
1748. 214 0. 729	10. 256 452. 258 1. 055	0. 685	4. 6154879637E+003	2. 1369181273E+003	-1. 4617269394E+002
1749. 290	10. 168 452. 993	0. 694	4. 4576425784E+003	2. 0378274519E+003	-1. 4740096400E+002
0. 720	1. 055 10. 042 453. 797	0. 703	4. 2884014721E+003	1. 9328007308E+003	-1. 4934900643E+002
0. 709 0. 963	1. 054	0 (05	4 11/2/FF00FF.002	1 00702010715.002	1 50/41014//5.002
1751. 575 0. 699	9. 914 454. 599 1. 054	0. 695	4. 1163655805E+003	1. 8278391271E+003	-1. 5064191466E+002
1752. 718 0. 688	9. 770 455. 385 1. 055	0. 693	3. 9441700531E+003	1. 7244190005E+003	-1. 4642851712E+002
1753. 274	9. 709 455. 777	0. 698	3.8639075584E+003	1. 6761481994E+003	-1. 4501770018E+002
0. 683	1. 056 9. 507 456. 570	0. 693	3. 6966360775E+003	1. 5769717393E+003	-1. 4885921753E+002
0. 672	1. 058 9. 301 457. 359	0. 685	3. 5237497757E+003	1. 4770324694E+003	-1. 5080670425E+002
0. 660	1. 061 9. 082 458. 136	0. 679	3. 3520280983E+003	1. 3796814636E+003	-1. 4631799608E+002
0. 649	1. 065 9. 008 458. 393	0. 684	3. 2968886142E+003	1. 3486629752E+003	-1. 4551333523E+002
0. 645	1. 067 8. 725 459. 178	0. 689	3. 1288484580E+003	1. 2545158239E+003	-1. 4805338261E+002
0. 632 0. 963	1. 072	0.009	3. 120040430UE+UU3	1. 2040100239E+003	-1.4000330201E+002
1759. 367 0. 619	8. 446 459. 967 1. 080	0. 692	2. 9585722426E+003	1. 1607838482E+003	-1. 4785198938E+002
1760. 509	8. 171 460. 759	0. 697	2. 7909922895E+003	1. 0704200274E+003	-1. 3883113014E+002
0. 606	1. 089 8. 124 460. 910	0. 721	2. 7620563512E+003	1. 0549575742E+003	-1. 3773084337E+002
0. 603	1. 090 7. 810 461. 736	0. 751	2. 6025531356E+003	9. 7057777538E+002	-1. 3835080101E+002
0. 590	1. 101 7. 560 462. 625	0. 785	2. 4459113217E+003	8. 8812750274E+002	-1. 3571226886E+002
0. 575	1. 115 7. 323 463. 528	0. 797	2. 2924374086E+003	8. 0877788557E+002	-1. 3104910022E+002
			Pagi na 23		

0. 559 1. 015	1. 131				
1764. 535 0. 554 1. 022	7. 254 463. 845 1. 136	0. 794	2. 2421005325E+003	7. 8321311161E+002	-1. 2979591455E+002
1765. 677	6. 919 464. 743	0. 818	2. 0942813849E+003	7. 0835965301E+002	-1. 2765612664E+002
0. 537 1. 044 1766. 820	1. 156 6. 657 465. 713	0. 869	1. 9503938736E+003	6. 3683801749E+002	-1. 2409335563E+002
0. 519	1. 179 6. 441 466. 730	0. 894	1. 8107160041E+003	5. 6897601266E+002	-1. 1865300303E+002
0. 501	1. 205 6. 326 467. 318	0. 901	1. 7345717308E+003	5. 3283383042E+002	-1. 1536112732E+002
0. 490	1. 221 6. 049 468. 348	0. 923	1. 6052352123E+003	4. 7332497005E+002	-1. 1401835943E+002
0. 471	1. 251 5. 822 469. 428	0. 953	1. 4740286958E+003	4. 1620146822E+002	-1. 1886253919E+002
0. 450	1. 284 5. 613 470. 525	0. 932	1. 3336227556E+003	3. 5965628008E+002	-1. 2257665722E+002
0. 430 1. 281	1. 320				
1773. 186 0. 408 1. 341	5. 339 471. 558 1. 359	0. 902	1. 1939291183E+003	3. 0600525257E+002	-1. 2557629237E+002
1773. 329 0. 406 1. 349	5. 302 471. 684 1. 364	0. 886	1. 1759331941E+003	2. 9950545754E+002	-1. 2482162903E+002
1774. 471 0. 385 1. 418	4. 942 472. 697 1. 406	0. 887	1. 0439988792E+003	2. 5187559209E+002	-1. 1486060732E+002
1775. 614	4. 585 473. 712	0.894	9. 1346554075E+002	2. 0789073499E+002	-1. 0975531174E+002
0. 363	1. 452 4. 241 474. 740	0. 893	7. 9319732255E+002	1. 6971192017E+002	-1. 0158755133E+002
0. 341	1. 500 3. 881 475. 753	0. 886	6. 8132811058E+002	1. 3670342794E+002	-9. 6200796515E+001
0. 319	1. 550 3. 881 475. 754	0. 883	6. 8120537837E+002	1. 3666905840E+002	-9. 6189780570E+001
0. 319 1. 661 1779. 043	1. 550 3. 517 476. 763	0. 886	5. 8062027657E+002	1. 0856603273E+002	-8. 1788213051E+001
0. 297 1. 747	1. 617				
1780. 159 0. 277 1. 840	3. 169 477. 756 1. 687	0. 874	4. 9609598429E+002	8. 6415254991E+001	-7. 2909518476E+001
1780. 745 0. 266 1. 895	2. 943 478. 250 1. 727	0. 863	4. 5426877681E+002	7. 5975983759E+001	-6. 9370727338E+001
1781. 887	2. 536 479. 248	0. 876	3. 7966168382E+002	5. 8270677407E+001	-5. 5763477227E+001
0. 245	1. 812 2. 499 479. 350	0. 928	3. 7348274001E+002	5. 6841371744E+001	-5. 5122571258E+001
0. 243	1. 820 2. 156 480. 413	0. 944	3. 0703111207E+002	4. 2224568720E+001	-5. 5036859527E+001
0. 220	1. 924 1. 845 481. 507	0. 983	2. 4771816583E+002	3. 0235208127E+001	-4. 8967626064E+001
0. 197 2. 253 1785. 428	2. 044 1. 591 482. 658	1. 042	1. 9513532635E+002	2. 0560709217E+001	-4. 4336915025E+001
0. 171 2. 422	2. 202	1.042	1. 7313332033LT002	2. 03007072171+001	-

Pagi na 24

1786. 570	1. 416 483. 888	1. 077	1. 4640400499E+002	1. 2723438056E+001	-3. 9558692151E+001
0. 143 2. 660	2. 424				
1787. 713	1. 241 485. 119	1. 090	1. 0473986927E+002	7. 0470327004E+000	-3. 7148294021E+001
0. 112 3. 051	2. 785				
1787. 879	1. 233 485. 315	0. 931	9.8546189518E+001	6. 3189990371E+000	-3. 5614691409E+001
0. 107 3. 108	2. 659				
1789. 022	0. 849 486. 337	0. 943	7. 0673860622E+001	3. 3520373074E+000	-2. 3121298704E+001
0. 079 3. 561	3. 084				
1790. 164	0. 578 487. 471	1. 086	4. 5711774349E+001	1. 4065996363E+000	-2. 1870228709E+001
0.052 4.449	3. 896				
1791. 307	0. 520 488. 819	1. 106	2.0698262007E+001	3. 4304400113E-001	-1. 6960384133E+001
0. 042 9. 305	7. 466				
1792. 449	0. 295 489. 998	1. 035	6. 9556478789E+000	6. 9757516802E-002	-8. 8856517142E+000
0.042 46.250	25. 677				
1793. 592	0. 076 491. 185	1. 035	3. 9368406168E-001	2. 4528193487E-003	-2. 2178201289E+000
0.042 1.985	2. 036	000		=: ::==::: ::::::::::::::::::::::::::::	=:=:::==::
	_:				

LEGENDA SIMBOLI

X(m): Ascissa sinistra concio

: Altezza linea di thrust da nodo sinistro base concio ht(m)

: coordinata Y linea di trust vt(m)

: gradiente pendenza locale linea di trust yt'(-)

E(x)(kN/m) : Forza Normale interconcio T(x)(kN/m) : Forza Tangenziale interconcio : derivata Forza normale interconcio E' (kN)

Rho(x) (-) : fattore mobilizzazione resistenza al taglio verticale interconcio ZhU et al. (2003)

FS_FEM(x) (-) : fattore di sicurezza locale stimato (locale in X) by qFEM FS_SRM(x) (-) : fattore di sicurezza locale stimato (locale in X) by SRM Procedure

TABELLA SFORZI DI TAGLIO DISTRIBUITI LUNGO SUPERFICIE INDIVIDUATA CON MINOR FS

X (m) 1637. 265 1638. 407 1639. 550 1640. 692	dx (m) 1.143 1.143 1.143	dl (m) 1. 156 1. 156 1. 156 1. 156	al pha (°) -8. 816 -8. 816 -8. 816 -8. 816	TauStress (kPa) -0. 648 -1. 943 -3. 239 -4. 534	TauF (kN/m) -0.749 -2.247 -3.745 -5.243	TauStrength (kPa) 3. 148 9. 447 15. 751 22. 069	TauS (kN/m) 3. 640 10. 922 18. 211 25. 516
1640. 042 1641. 835 1642. 977 1644. 120 1645. 262 1646. 405 1647. 548	1. 143 1. 143 1. 143 1. 143 1. 143 1. 143	1. 156 1. 156 1. 156 1. 156 1. 156 1. 156	-8. 816 -8. 816 -8. 816 -8. 816 -8. 816 -8. 816	-4. 334 -5. 830 -7. 125 -8. 421 -9. 716 -11. 012 -12. 307	-3. 243 -6. 740 -8. 238 -9. 736 -11. 234 -12. 732 -14. 230	28. 416 34. 813 41. 273 47. 806 54. 506 61. 511	32. 855 40. 251 47. 720 55. 274 63. 020 71. 120

1648. 690	0. 581	0. 588	-8. 816	-13. 285	-7. 814	67. 014	39. 417
1649. 271	1. 119	1. 132	-8. 816	-14. 248	-16. 129	81. 059	91. 758
1650. 390	0. 170	0. 172	-8. 816	-15. 037	-2. 587	86. 576	14. 894
1650. 560	0. 702	0. 711	-8. 816	-15. 831	-11. 250	92. 050	65. 416
1651. 262	1. 143	1. 153	-7. 864	-15. 646	-18. 046	104. 479	120. 506
1652. 405	1. 143	1. 153	-7. 864	-17. 459	-20. 137	121. 462	140. 093
1653. 547	0. 953	0. 962	-7. 864	-19. 121	-18. 388	133. 678	128. 555
1654. 500	1. 143	1. 153	-7. 864	-20. 783	-23. 971	147. 246	169. 833
1655. 643	1. 143	1. 153	-7. 864	-22. 596	-26. 062	163. 167	188. 196
1656. 785	0. 741	0. 748	-7. 864	-24. 090	-18. 009	173. 905	130. 004
1657. 526	0. 534	0. 539	-7. 864	-25. 101	-13. 523	182. 470	98. 302
1658. 059	1. 143	1. 149	-5. 910	-20. 009	-22. 984	192. 773	221. 430
1659. 202	1. 143	1. 149	-5. 910	-21. 378	-24. 556	204. 329	234. 704
1660. 344	1. 143	1. 149	-5. 910	-22. 748	-26. 129	209. 467	240. 605
1661. 487	1. 143	1. 149	-5. 910	-24. 117	-27. 702	216. 385	248. 552
1662. 629	0. 091	0. 091	-5. 910	-24. 856	-2. 265	220. 353	20. 082
1662. 720	1. 143	1. 145	-3. 633	-15. 776	-18. 062	228. 465	261. 558
1663. 863	1. 143	1. 145	-3. 633	-16. 567	-18. 966	238. 973	273. 588
1665. 005	1. 143	1. 145	-3. 633	-17. 357	-19. 871	248. 180	284. 129
1666. 148	0. 560	0. 562	-3. 633	-17. 946	-10. 079	252. 573	141. 847
1666. 708	1. 143	1. 143	-0. 808	-4. 126	-4. 715	257. 728	294. 496
1667. 851	1. 143	1. 143	-0. 808	-4. 287	-4. 899	265. 905	303. 839
1668. 993	1. 143	1. 143	-0. 808	-4. 449	-5. 083	274. 231	313. 354
1670. 136	0. 369	0. 369	-0. 808	-4. 555	-1. 679	276. 971	102. 077
1670. 504	1. 143	1. 143	1. 441	8. 296	9. 482	282. 179	322. 505
1671. 647	1. 143	1. 143	1. 441	8. 562	9. 786	290. 615	332. 147
1672. 790	1. 143	1. 143	1. 441	8. 828	10. 089	296. 666	339. 063
1673. 932	0. 179	0. 179	1. 441	8. 981	1. 605	296. 648	52. 997
1674. 111	1. 143	1. 145	3. 660	23. 128	26. 479	297. 532	340. 640
1675. 253	1. 143	1. 145	3. 660	23. 748	27. 189	304. 913	349. 090
1676. 396	1. 143	1. 145	3. 660	24. 368	27. 898	311. 127	356. 204
1677. 538	0. 392	0. 393	3. 660	24. 784	9. 746	313. 623	123. 323
1677. 931	1. 143	1. 148	5. 637	38. 629	44. 350	311. 791	357. 967
1679. 073	1. 143	1. 148	5. 637	39. 506	45. 357	317. 093	364. 054
1680. 216	1. 143	1. 148	5. 637	40. 384	46. 365	321. 247	368. 823
1681. 358	0. 646	0. 649	5. 637	41. 070	26. 647	322. 650	209. 343
1682. 004	1. 143	1. 152	7. 231	53. 304	61. 390	321. 020	369. 721
1683. 147	1. 143	1. 152	7. 231	54. 348	62. 594	324. 727	373. 991
1684. 289	1. 143	1. 152	7. 231	55. 393	63. 797	327. 624	377. 327
1685. 432	1. 143	1. 152	7. 231	56. 438	65. 000	330. 526	380. 669
1686. 574	0. 135	0. 136	7. 231	57. 022	7. 755	328. 449	44. 672
1686. 709	1. 143	1. 157	9. 123	72. 165	83. 509	323. 344	374. 169
1687. 852	1. 143	1. 157	9. 123	73. 361	84. 892	325. 816	377. 030
1688. 994	1. 143	1. 157	9. 123	74. 556	86. 275	328. 152	379. 732
1690. 137	0. 599	0. 606	9. 123	75. 466	45. 763	326. 406	197. 936
1690. 736	1. 143	1. 166	11. 464	94. 945	110. 687	316. 353	368. 806
1691. 878	1. 143	1. 166	11. 464	96. 254	112. 213	317. 160	369. 747

1693. 021 1694. 163 1694. 512 1695. 655 1696. 797 1697. 940 1698. 059 1699. 201 1700. 344 1701. 486 1701. 829 1702. 972 1704. 114 1705. 257 1705. 382 1706. 524 1707. 667 1708. 809 1709. 146 1710. 289 1711. 431 1712. 574 1713. 145 1714. 287 1715. 430 1716. 572 1717. 715 1717. 746 1718. 889 1720. 031 1721. 174 1721. 822 1722. 965 1724. 107 1725. 250 1725. 688 1726. 830 1727. 973	1. 143 0. 349 1. 143 1. 143	1. 166 0. 356 1. 178 1. 178 1. 178 1. 178 0. 122 1. 192 1. 192 1. 192 0. 358 1. 209 1. 209 1. 209 0. 132 1. 228 1. 228 1. 228 1. 228 1. 228 1. 228 1. 246 1. 246 0. 623 1. 246 1. 262 1. 262 1. 262 1. 262 1. 262 1. 278 1.	11. 464 11. 464 14. 063 14. 063 14. 063 14. 063 16. 614 16. 614 16. 614 19. 085 19. 085 19. 085 19. 085 21. 478 21. 478 21. 478 21. 478 23. 538 23. 538 23. 538 23. 538 25. 168 26. 594	97. 562 98. 416 120. 005 121. 344 122. 684 123. 423 144. 183 145. 455 146. 727 147. 554 167. 189 168. 304 169. 420 170. 038 187. 997 188. 876 189. 755 190. 324 204. 962 205. 571 206. 638 217. 566 217. 921 218. 275 218. 629 218. 811 227. 623 227. 725 227. 826 227. 725 227. 826 227. 905 237. 268 237. 042 236. 661 245. 413 244. 804 244. 195	113. 739 35. 038 141. 348 142. 925 144. 503 15. 110 171. 913 173. 429 174. 946 52. 793 202. 132 203. 481 204. 829 22. 467 230. 825 231. 904 232. 983 68. 902 255. 433 256. 951 128. 657 274. 654 275. 101 275. 548 275. 996 7. 559 290. 841 290. 970 291. 099 165. 239 307. 730 307. 437 307. 145 117. 741 323. 742 322. 938 322. 134	317. 491 315. 695 302. 615 302. 701 302. 383 299. 760 286. 075 285. 865 285. 597 283. 505 268. 751 267. 386 266. 385 251. 139 250. 273 249. 701 248. 869 235. 510 234. 270 233. 638 233. 002 222. 091 221. 200 220. 540 219. 148 210. 330 209. 707 209. 152 208. 410 198. 234 197. 620 197. 084 196. 950 186. 035 185. 439 184. 957	370. 133 112. 392 356. 435 356. 537 356. 162 36. 699 341. 094 340. 843 340. 524 101. 435 324. 922 323. 874 323. 271 35. 198 308. 351 307. 288 306. 586 90. 097 293. 503 291. 169 145. 072 280. 366 279. 240 278. 408 277. 474 7. 570 268. 745 267. 949 267. 240 151. 105 257. 104 256. 307 255. 613 97. 984 245. 411 244. 625 243. 990
1724. 107 1725. 250 1725. 688 1726. 830	1. 143 0. 438 1. 143 1. 143 1. 143 0. 264	1. 297 0. 498 1. 319 1. 319 1. 319 0. 304	28. 245 28. 245 29. 990 29. 990 29. 990 29. 990	236. 817 236. 661 245. 413 244. 804	307. 145 117. 741 323. 742 322. 938 322. 134 74. 189	197. 084 196. 950 186. 035 185. 439	255. 613 97. 984 245. 411 244. 625 243. 990 56. 274
1729. 379 1730. 522 1731. 664 1732. 807 1733. 199 1734. 342 1735. 484 1736. 627	1. 143 1. 143 1. 143 0. 392 1. 143 1. 143 0. 267	1. 343 1. 343 1. 343 0. 461 1. 367 1. 367 1. 367 0. 319	31. 697 31. 697 31. 697 31. 697 33. 331 33. 331 33. 331 33. 331	251. 192 250. 170 249. 149 248. 463 254. 251 252. 802 251. 353 250. 460	337. 311 335. 940 334. 568 114. 556 347. 686 345. 704 343. 723 79. 921	174. 154 173. 541 173. 053 173. 241 162. 950 162. 393 161. 907 162. 215	233. 861 233. 038 232. 383 79. 874 222. 832 222. 071 221. 406 51. 762

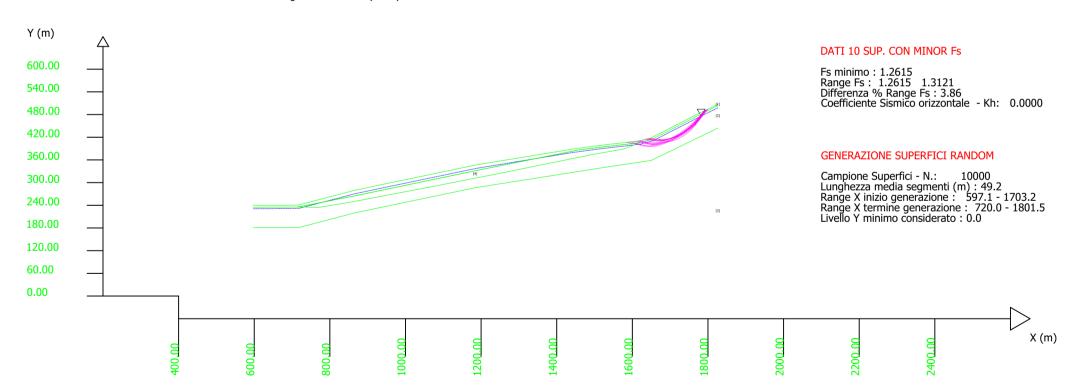
Pagi na 27

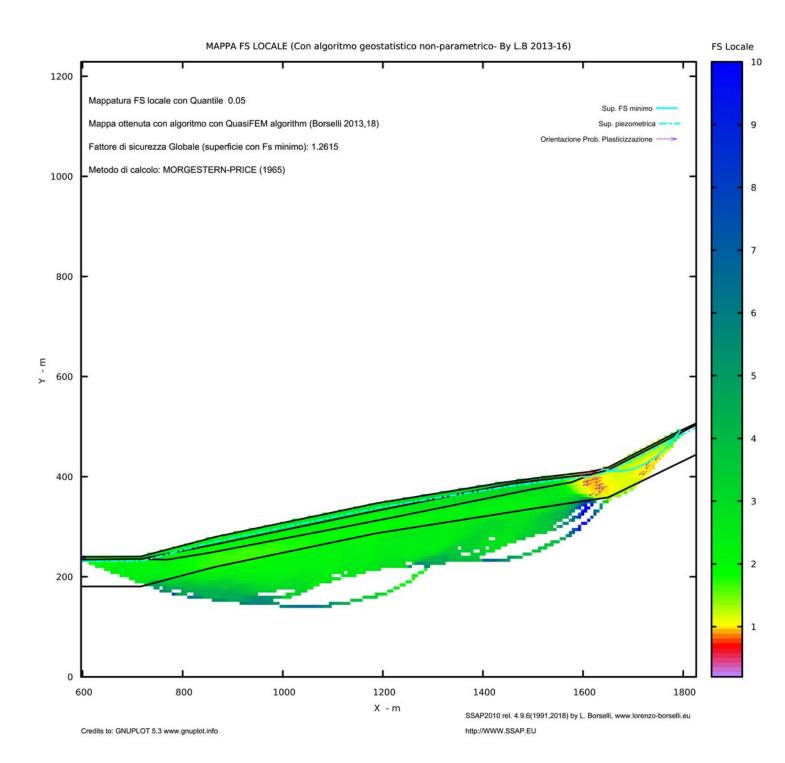
1736. 893 1738. 036 1739. 178 1740. 321 1740. 742 1741. 884 1743. 027 1744. 170 1744. 786 1745. 929 1747. 071 1748. 214 1749. 290 1750. 432 1751. 575 1752. 718 1753. 274 1754. 416 1755. 559 1756. 701 1757. 081 1758. 224 1759. 367 1760. 509 1760. 720 1761. 862 1763. 005 1764. 147 1764. 535 1765. 677 1766. 820 1767. 962 1768. 615 1769. 901 1772. 043 1773. 186 1773. 329 1774. 471 1775. 614 1776. 756	1. 143 1. 143	1. 393 1. 393 1. 393 0. 513 1. 417 1. 417 0. 765 1. 439 1. 439 1. 439 1. 473 1. 473 0. 717 1. 515 1. 515 0. 504 1. 564 1. 564 1. 564 1. 614 1. 614 1. 614 1. 614 1. 680 1. 680 1. 680 1. 736 1. 736 1. 736 1. 736 1. 736 1. 736 1. 786 1. 786 1. 786	34. 890 34. 890 34. 890 34. 890 36. 275 36. 275 36. 275 37. 423 37. 423 37. 423 37. 423 39. 137 39. 137 39. 137 41. 070 41. 070 43. 062 43. 062 43. 062 44. 931 44. 931 44. 931 44. 931 44. 931 44. 931 47. 164 47. 164 48. 834 48. 834 48. 834 48. 834 48. 834 50. 219 50. 219 50. 219	254. 852 252. 967 251. 082 249. 792 252. 445 250. 150 247. 855 246. 088 247. 037 244. 387 241. 738 239. 165 239. 743 236. 540 233. 336 230. 954 230. 954 227. 079 223. 218 220. 644 219. 294 214. 721 210. 148 207. 440 204. 858 199. 591 194. 323 190. 796 186. 298 180. 169 174. 040 169. 224 163. 054 156. 262 149. 470 142. 678 138. 857 133. 694 126. 341 118. 989 111. 636	354. 992 352. 366 349. 740 128. 205 357. 773 354. 521 351. 268 188. 295 355. 403 351. 591 347. 779 323. 989 353. 152 348. 432 343. 713 165. 569 349. 991 344. 138 338. 286 111. 298 342. 936 335. 784 328. 633 59. 800 330. 614 322. 112 313. 611 104. 403 313. 065 302. 766 292. 467 162. 542 283. 022 271. 233 259. 444 247. 655 30. 132 238. 730 225. 601 212. 472 199. 344	152. 352 151. 768 151. 288 151. 614 143. 081 142. 473 142. 016 142. 293 135. 226 134. 572 134. 133 134. 041 124. 451 124. 083 123. 475 123. 375 112. 197 111. 279 111. 743 100. 455 100. 160 99. 454 99. 978 89. 106 88. 622 88. 192 89. 358 77. 636 77. 226 77. 106 78. 189 69. 716 70. 171 71. 713 72. 327 74. 300 66. 123 66. 158 66. 660 67. 091	212. 216 211. 402 210. 734 77. 815 202. 778 201. 917 201. 269 108. 876 194. 545 193. 604 192. 972 181. 581 183. 322 182. 779 181. 883 88. 447 170. 034 169. 611 168. 643 56. 366 157. 094 156. 632 155. 529 28. 821 143. 805 143. 024 142. 330 48. 896 130. 464 129. 774 129. 573 75. 101 121. 800 124. 476 125. 543 118. 072 118. 135 119. 032 119. 801
1773. 329	1. 143	1. 786	50. 219	133. 694	238. 730	66. 123	118. 072
1774. 471	1. 143	1. 786	50. 219	126. 341	225. 601	66. 158	118. 135
1775. 614	1. 143	1. 786	50. 219	118. 989	212. 472	66. 660	119. 032

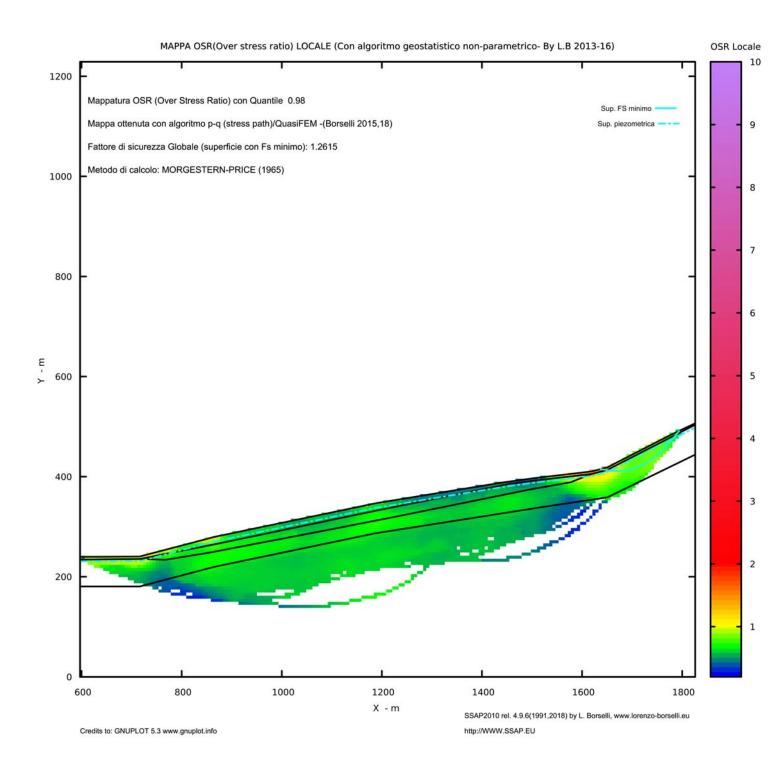
1782. 000 1783. 143 1784. 285 1785. 428 1786. 570 1787. 713 1787. 879 1789. 022 1790. 164 1791. 307 1792. 449	1. 143 1. 143 1. 143 1. 143 0. 166 1. 143 1. 143 1. 143 1. 143	1. 811 1. 811 1. 811 1. 811 1. 811 0. 264 1. 811 1. 811 1. 811	50. 889 50. 889 50. 889 50. 889 50. 889 50. 889 50. 889 50. 889 50. 889	75. 984 68. 382 60. 780 53. 177 45. 575 41. 220 36. 866 29. 263 21. 661 14. 058 6. 456	137. 622 123. 852 110. 083 96. 313 82. 544 10. 865 66. 771 53. 001 39. 232 25. 462 11. 693	54. 085 49. 032 43. 700 38. 188 32. 497 29. 362 23. 410 18. 469 13. 566 8. 689 3. 974	97. 958 88. 807 79. 149 69. 166 58. 858 7. 740 42. 400 33. 450 24. 571 15. 737 7. 198
1792. 449 1793. 592	1. 143 0. 399	1. 811 0. 632	50. 889 50. 889	6. 456 1. 327	11. 693 0. 840	3. 974 0. 815	7. 198 0. 516

X(m): Ascissa sinistra concio

X(m) : Ascissa sinistra concio dx(m) : Larghezza concio dl(m) : lunghezza base concio al pha(°) : Angolo pendenza base concio TauStress(kPa) : Sforzo di taglio su base concio TauF (kN/m) : Forza di taglio su base concio TauStrength(kPa) : Resistenza al taglio su base concio TauS (kN/m) : Forza resistente al taglio su base concio


SSAP 4.9.6 (2018) - Slope Stability Analysis Program Software by Dr.Geol. L.Borselli - www.lorenzo-borselli.eu SSAP/DXF generator rel. 1.5.2 (2018)


Data: 2/7/2018 Localita': Descrizione :


[n] = N. strato o lente

#	Paran	netri Geote	cnici degli	strati # -							
	N.	phi`	C,	Cu	Gamm	GammSat	sqci	GSI	mi	D	
		deg	kPa	kPa	kN/m3	kN/m3	MPa				
	1	37.00	0	0	18.00	19.00	0	0	0	0	
	2	40.00	0	0	18.00	19.00	0	0	0	0	
	3	49.00	0	0	19.00	20.00	0	0	0	0	
	4	39 00	Ω	Λ	19 00	20.00	Ω	Λ	Λ	Λ	

Modello di calcolo: Morgenstern - Price (1965)


```
# Report el aborazioni #
   SSAP 4.9.6 - Slope Stability Analysis Program (1991, 2018)
                           WWW. ŠSAP. EÚ
                       Build No. 10434
                              BY
               Dr. Geol. LORENZO BORSELLI *, **
               *UASLP, San Luis Potosi, Mexico
                e-mail: Iborselli@gmail.com
        CV e WEB page personal e: WWW. LORENZO-BORSELLI. EU
       ** Gia' Ricercatore CNR-IRPI fino a Luglio 2011
Ultima Revisione struttura tabelle del report: 14 aprile 2018
______
   Localita': Saltino (Prignano sulla Secchia (MO)
   Descri zi one:
Modello pendio: modello2018.mod
  ----- PARAMETRI DEL MODELLO DEL PENDIO ------
            PARAMETRI GEOMETRICI - Coordinate X Y (in m)
           SUP T.
                           SUP 2
                                           SUP 3
                                                          SUP 4
         Χ
                         Χ
                                 Υ
                                         Χ
                                                 Υ
                                                                 Υ
                                                         Χ
                              234.37
       597. 14
              239. 87
                      597. 14
                                      597.14
                                              180. 74 716. 30 235. 62
              239. 99 647. 94
                              235.00 622.18
       647. 94
                                              180. 74 768. 00 234. 17
       716.30
              240. 61 716. 30
                              235. 62
                                      647.94
                                              180. 74 853. 65 247. 97
       833.04
              271. 09 865. 61
                              264. 91
                                              180. 74 1097. 28
                                      716. 30
                                                              294.60
                              331.66 865.90
       865.90
              279. 88 1185. 90
                                              220. 01 1226. 15
                                                              319.86
      888. 43
                              385. 99 1185. 90
                                              286. 76 1402. 38
              284. 43 1456. 37
                                                              355.56
       939.53
              295. 26 1515. 82
                              393. 51 1515. 82
                                              338. 63 1495. 91
                                                              374.51
              312. 88 1618. 85
                                              358. 81 1577. 13
      1024.37
                              405. 42 1650. 56
                                                              388.85
      1088.56
              326. 22 1650. 56
                              413.69 1826.07
                                              444. 13 1618. 85
                                                              405.42
     1131.73
              335. 33 1817. 00
                              499.01
                                                     1515.82 393.51
     1188. 73
              347. 09 1826. 07
                              503.52
                                                     1456, 37 385, 99
              355. 66
                                                     1185. 90 331. 66
     1240. 96
     1324.69
              369.39
                                                      865. 61 264. 91
     1402. 25
              382. 11
                                                      716. 30 235. 62
     1441. 33 388. 51
     1501. 77 396. 73
```

Pagi na 1

```
1542. 18 401. 55
               406.51
      1585. 12
      1620. 03
              410. 72
      1650. 39 418. 64
      1777. 90 483. 96
      1826. 07 506. 83
 ---- SUP FALDA -----
               Y (in m)
   597. 14 230. 88
   648. 10 230. 99
   718.57
           231. 90
   835. 37 262. 40
   867. 96 271. 11
   890. 29 275. 63
   941. 38
           286. 45
   1026. 20
           304.07
  1090.42
           317.42
  1133.57
            326. 52
  1190. 36
            338. 24
  1242. 42
           346. 78
  1326. 14
            360.51
  1403. 70
            373. 22
  1442.66
           379.61
  1502. 91
            387.80
  1543. 23
            392.61
  1586. 19
           397.58
  1622.30
           402.01
  1654.50
           410.63
  1782.00
           475. 95
  1826.07 497.83
    ----- GESTIONE ACQUIFERI -----
Strati esclusi da acquifero:
Esclusione sovraccari co pendio sommerso:
                                           NON ATTIVATA
Peso unitario fluido (kN/m^3):
                                   9.81
Parametri funzione dissipazione superficiale pressione dei fluidi:
         Coefficiente A
         Coefficiente K
                                                 0.000800
         Pressione minima fluidi Uo_Min (kPa)
                                                   0.01
```

Coefficiente di soprapressione oltre pressione hidrostatica1.00 Limitazione dissipazionea a Pressione Idrostatica = ATTIVA STABILITE CONDIZIONI PER LA VERIFICA CON SOVRAPPRESSIONE ACQUIFERI CON DISSIPAZIONE IN DIREZIONE DELLA SUPERFICIE

mi

0.00

0.00

0.00

-	PARAMET	RI GEOMECCAN	ICI						
D		fi`	C`	Cu	Gamm	Gamm_sat	STR_I DX	sgci	GSI
0. 00	STRATO 1	37. 00	0.00	0. 00	18. 00	19. 00	2. 651	0.00	0.00
0.00	STRATO 2	40.00	0.00	0.00	18. 00	19.00	3. 055	0.00	0.00
0.00	STRATO 3	49. 00	0.00	0.00	19. 00	20.00	4. 557	0.00	0.00
0.00	STRATO 4	39. 00	0.00	0.00	19. 00	20.00	2. 916	0.00	0.00
	Cu _ Gamm Gamm STR_ sigc GSI mi _ D Fatt CRITERIO DI ROT	Coes Resi: Peso Sat Peso IDX Indi SOLO Per AM I Geolo Indi Fatto Ore di riduz TURA Hoek et	ione efficacestenza al tag di volume to di volume to ce di resisto MASSI ROCCIO stenza Compro ogical Streng ce litologico ore di distur ione NTC2018 al. (2002, 200	e (in Kpa) glio Non dre erreno fuori erreno immen enza (usato SI FRATTURAT essione Unia ght Index ar o ammasso(ac rbo ammasso(ac gammaPHI=1. D6) - non-li	enata (in Kpa falda (in k rso (in KN/m/ in solo in ' TI - Parametr assiale Rocci mmasso(adimer dimensionale) (adimensional 25 e gammaC=	a) KN/m^3) ^3) ri Criterio ia Intatta (nsionale)) le) =1.25 - DISA eralizzato s	IIIVAIO (SOLO	Hoek (200 per ROCCE)
* * *	*** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI METODO DI RICERCA: CONVEX RANDOM - Chen (1992) FILTRAGGIO SUPERFICI: ATTIVATO COORDINATE X1, X2, Y OSTACOLO: 0.00 0.00 LUNGHEZZA MEDIA SEGMENTI (m): 49.2 (+/-) 50% INTERVALLO ASCISSE RANDOM STARTING POINT (Xmin Xmax): 597.14 1703.18 LIVELLO MINIMO CONSIDERATO (Ymin): 0.00 INTERVALLO ASCISSE AMMESSO PER LA TERMINAZIONE (Xmin Xmax): 720.03 1801.49								
***	TOTALE SUPERF	ICI GENERATE	: 100	000					

```
----- INFORMAZIONI PARAMETRI DI CALCOLO ------
    METODO DI CALCOLO: MORGENSTERN - PRICE (Morgenstern & Price, 1965)
    COEFFICIENTE SISMICO UTILIZZATO Kh : 0.0120
    COEFFICIENTE SISMICO UTILIZZATO Kv (assunto Positivo): 0.0060
    COEFFICIENTE c=Kv/Kh UTILIZZATO : 0.5000
    FORZA ORIZZONTALE ADDIZIONALE IN TESTA (kN/m): 0.00
    FORZA ORIZZONTALE ADDIZIONALE ALLA BASE (KN/m): 0.00
    N.B. Le forze orizzontali addizionali in testa e alla base sono poste uguali a 0
         durante le tutte le verifiche globali.
         I valori >0 impostati dall'utente sono utilizzati solo in caso di verifica singola
 ----- RISULTATO FINALE ELABORAZIONI ------
  * DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *
Fattore di sicurezza (FS)
                          1.2009 - Min. - X
                                                                Lambda = 0.5271
                                            1616. 19 410. 26
                                            1630. 14 404. 77
                                            1636. 61 402. 40
                                            1640.89
                                                    401.09
                                            1644. 38
                                                    400. 29
                                            1647.89
                                                     399.82
                                            1651. 01 399. 63
                                            1654.46
                                                    399.69
                                            1658. 24
                                                    399.99
                                            1662, 93 400, 58
                                            1666. 96 401. 18
                                            1670. 71
                                                    401.86
                                            1674. 24 402. 61
                                            1677. 88 403. 52
                                            1681. 36 404. 51
                                            1685.00 405.67
                                            1688. 79 406. 99
                                            1693. 01 408. 57
                                            1696. 87 410. 10
                                            1700. 57 411. 66
                                            1704. 16 413. 27
                                            1707.84 415.00
                                            1711. 42 416. 79
                                            1715. 11 418. 72
                                            1718. 92 420. 82
```

Pagi na 4

```
1723.05
                                                            423. 17
                                                  1726. 85
1730. 53
                                                             425.44
                                                             427. 74
                                                   1734. 10
                                                            430.09
                                                   1737. 77
                                                             432.62
                                                   1741. 37
                                                             435. 20
                                                   1745. 08
                                                             437. 99
                                                   1748. 94
                                                             441.01
                                                   1753. 16
                                                             444.41
                                                   1756. 93
                                                             447.63
                                                   1760. 56
                                                             450.94
                                                   1764.04
                                                             454.33
                                                   1767.69
                                                             458. 10
                                                   1771. 61
                                                             462.46
                                                   1776. 12 467. 78
                                                  1782. 64 475. 83
1795. 82 492. 47
                                1. 2086 - N. 2 -- X Y
1645. 15 417. 27
Fattore di sicurezza (FS)
                                                                         Lambda= 0.5565
                                                  1656. 59
1661. 97
                                                             412.34
                                                             410. 15
                                                   1665.56
                                                             408.89
                                                   1668.54
                                                             408.05
                                                   1671. 48
                                                             407. 45
                                                   1674. 16
                                                             407.10
                                                  1677. 10
1680. 33
                                                             406.90
                                                             406.86
                                                   1684.32
                                                             406.98
                                                   1687.60
                                                             407. 20
                                                   1690.60
                                                             407.54
                                                   1693.36
                                                             408.01
                                                   1696. 33
                                                             408.69
                                                   1699.07
                                                             409.46
                                                   1702.01
                                                             410.46
                                                   1705. 15
                                                             411. 68
                                                   1708.83
                                                            413. 25
                                                   1712. 11
                                                            414. 72
                                                   1715. 21
                                                             416. 21
                                                   1718. 18
                                                            417.74
                                                   1721. 22
                                                             419.39
                                                   1724. 18
                                                            421.09
                                                   1727. 24 422. 95
                                                               Pagi na 5
```

```
1730. 42 424. 98
1733. 91 427. 29
1737. 06 429. 49
                                                                                                431. 73
                                                                                1740. 10
                                                                                1743. 03
                                                                                                434.02
                                                                                1746.07
                                                                                                436. 52
                                                                                1749. 01
                                                                                                439. 07
                                                                                                441.84
                                                                                1752.05
                                                                                1755. 20
                                                                                                444.84
                                                                                1758. 64
                                                                                                448. 23
                                                                                1761. 82
1764. 89
                                                                                                451.48
                                                                                                454.76
                                                                                1767. 88
1770. 94
1774. 28
                                                                                                458.07
                                                                                                461.60
                                                                                                465.65
                                                                                1778. 07
                                                                                                470.42
                                                                                1783. 49 477. 47
1794. 27 491. 73
                                                 1. 2105 - N. 3 -- X Y

1621. 70 411. 16
1633. 83 409. 56
1640. 15 408. 72
1644. 65 408. 13
1648. 72 407. 59
1652. 31 407. 12
1656. 02 406. 63
1659. 80 406. 13
1663. 78 405. 61
1668. 01 405. 05
1671. 48 404. 76
1674. 70 404. 71
Fattore di sicurezza (FS)
                                                                                                                    Lambda= 0. 5244
                                                                                1674.70
                                                                                                404.71
                                                                                1677. 64
1680. 99
1683. 95
1687. 19
                                                                                                404. 90
405. 37
                                                                                                406.02
                                                                                                406.99
                                                                                1690. 68
1694. 89
                                                                                                408. 27
                                                                                                410.02
                                                                                1698.86
                                                                                                411.67
                                                                                1702.65
                                                                                                413. 25
                                                                                1706. 35
                                                                                                414. 79
                                                                                1709. 94
                                                                                                416. 29
                                                                                1713.59 417.82
```

Pagi na 6

```
1717. 26 419. 36
1721. 02 420. 93
1724. 87 422. 55
                                                       1728. 40
                                                                 424. 14
                                                       1731.85
                                                                  425.82
                                                       1735. 19
                                                                  427.57
                                                       1738. 70 429. 54
                                                       1742. 12 431. 60
                                                       1745. 70
                                                                  433.89
                                                       1749. 53
1753. 89
                                                                  436.47
                                                                  439.54
                                                       1757. 48
                                                                 442. 35
                                                       1760.86
                                                                  445.34
                                                       1764. 00
                                                                  448. 48
                                                       1767.44
                                                                  452.31
                                                       1771. 02
1775. 26
1781. 55
1794. 58
                                                                  456.83
                                                                  462.69
                                                                  471. 99
                                                                 491.88
                                                       - X
1620.60
1633.36
1639.66
1644.02
Fattore di sicurezza (FS)
                                   1. 2107 - N. 4 --
                                                                      Υ
                                                                                Lambda= 0.5322
                                                                  410.87
                                                                  407. 10
405. 33
                                                                  404. 22
                                                       1647.80
                                                                  403.39
                                                       1651. 33
1654. 75
                                                                  402.74
                                                                  402. 22
                                                       1658. 35
                                                                  401. 79
                                                       1662. 19
                                                                  401.43
                                                       1666. 56
                                                                  401.13
                                                       1670. 22
                                                                  401.01
                                                       1673.63
                                                                  401.08
                                                       1676.80
                                                                  401.32
                                                       1680. 24
                                                                  401.78
                                                       1683. 41
                                                                  402.38
                                                       1686.82
                                                                  403. 23
                                                       1690. 48
                                                                  404.32
                                                       1694.80
                                                                  405.78
                                                       1698. 64
                                                                  407. 16
                                                       1702. 25
                                                                  408.57
                                                       1705. 71
                                                                  410.02
                                                       1709. 25
                                                                 411. 62
                                                                    Pagi na 7
```

```
1712. 68 413. 28
                                                 1716. 22
                                                           415. 10
                                                 1719. 91
                                                           417. 10
                                                 1723. 96
                                                           419. 39
                                                 1727. 65
                                                           421.59
                                                 1731. 22
                                                           423.82
                                                 1734. 67
                                                           426. 10
                                                           428. 56
                                                 1738. 21
                                                 1741.69
                                                           431.08
                                                 1745. 29
                                                           433.82
                                                 1749.07
                                                           436.81
                                                 1753. 24
                                                           440. 22
                                                 1756.87
                                                           443.42
                                                 1760. 33
                                                           446. 75
                                                 1763.63
                                                           450. 19
                                                 1767. 13
                                                           454.14
                                                 1770. 85
                                                           458.74
                                                 1775. 18
                                                           464.46
                                                 1781. 50
                                                           473. 29
                                                 1794. 37 491. 78
                               1. 2117 - N. 5 -- X
1623. 43
1633. 74
1639. 11
Fattore di sicurezza (FS)
                                                                       Lambda= 0.5385
                                                           411.61
                                                           409. 19
                                                           407. 93
                                                 1642. 94
                                                           407.03
                                                 1646. 40
                                                           406. 22
                                                 1649. 46
                                                           405.51
                                                 1652.60
                                                           404.77
                                                 1655. 81
1659. 17
                                                           404.02
                                                           403.23
                                                 1662. 72
                                                           402.40
                                                 1665.67
                                                           401.84
                                                 1668. 44
                                                           401.49
                                                 1670. 99
                                                           401.35
                                                 1673.86
                                                           401.39
                                                 1676. 43
                                                           401.61
                                                 1679. 25
                                                           402.06
                                                 1682. 31
                                                           402.73
                                                 1686.04
                                                           403.72
                                                 1689. 35
                                                           404.66
                                                 1692.46
                                                           405.61
                                                 1695. 42 406. 59
                                                             Pagi na 8
```

```
1698. 42 407. 66
                                                             1701. 35
1704. 37
                                                                          408.78
                                                                          410.01
                                                                         411. 35
                                                              1707.50
                                                              1710.89
                                                                         412.88
                                                              1714.00
                                                                         414. 37
                                                              1717. 01
                                                                         415.88
                                                              1719. 92
                                                                          417.44
                                                             1722. 92
1725. 84
                                                                          419. 13
                                                                          420.88
                                                              1728. 86
                                                                          422.77
                                                              1732.00
                                                                         424.83
                                                             1735. 43
1738. 54
                                                                          427. 16
                                                                          429. 38
                                                              1741. 53
                                                                          431.65
                                                             1744. 42
1747. 41
1750. 30
                                                                          433. 97
                                                                          436. 50
                                                                          439.09
                                                             1753. 29
1756. 40
                                                                          441.89
                                                                          444. 93
                                                             1756. 40 444. 93
1759. 79 448. 37
1762. 92 451. 66
1765. 96 454. 98
1768. 91 458. 33
1771. 92 461. 88
1775. 22 465. 95
1778. 96 470. 74
                                                             1784. 31 477. 80
1794. 92 492. 04
                                       1. 2171 - N. 6 -- X
Fattore di sicurezza (FS)
                                                                                          Lambda= 0. 5467
                                                              1629. 86 413. 28
                                                              1640. 56
                                                                          410. 18
                                                              1645.74
                                                                          408.77
                                                              1649. 29
                                                                          407.94
                                                              1652. 32
                                                                          407.36
                                                              1655. 20
                                                                          406.96
                                                              1657. 93
                                                                          406.69
                                                              1660.82
                                                                          406.54
                                                              1663.88
                                                                          406.49
                                                                          406. 53
                                                              1667.43
                                                              1670. 52
                                                                          406.66
                                                              1673.44
                                                                          406.87
                                                                             Pagi na 9
```

```
1676. 21
                             407. 18
                   1679. 11
                             407.60
                   1681.87
                             408. 10
                   1684.75
                             408.73
                   1687.77
                             409.49
                   1691. 16
                             410. 43
                   1694. 26
                             411. 35
                   1697. 23
                             412.30
                   1700. 10
                             413. 29
                   1703.03
                             414.37
                   1705.90
                             415. 49
                   1708.85
                             416.71
                   1711. 92
                             418.05
                   1715. 24
                             419.57
                   1718. 27
                             421.04
                   1721. 19
                             422.54
                  1724. 01
1726. 93
1729. 76
                             424. 10
                             425.81
                             427.56
                   1732. 70
                             429. 49
                   1735. 76
                             431. 59
                   1739. 12
                             433. 99
                   1742. 16
                             436. 27
                   1745. 09
                             438.60
                   1747. 91
                             440. 97
                  1750. 83
1753. 64
1756. 52
1759. 49
                             443.56
                             446. 18
                             449.00
                             452.03
                  1762. 66
1765. 76
                             455.39
                             458.69
                  1768. 79
1771. 79
                             461.94
                             465. 17
                  1774. 77
1778. 12
                             468.40
                             472.05
                   1781. 84
                             476. 14
                   1787. 08
                             481. 92
                   1797. 19
                             493. 12
                                          Lambda= 0.5468
1. 2188 - N. 7 --
                       Χ
                                 Υ
                   1635.01
                             414.63
                   1649. 41
                             410.76
                   1656. 19
                             409.10
                               Pagi na 10
```

Fattore di sicurezza (FS)

```
1664. 50
1668. 23
                                                                        407.53
                                                            1671. 63
                                                                        407.55
                                                                        407. 81
                                                            1675. 33
                                                            1679. 36
1684. 25
                                                                        408.30
                                                                        409.08
                                                            1688. 39
                                                                        409.88
                                                            1692. 23
1695. 82
                                                                        410.77
                                                                        411.77
                                                            1699. 61
                                                                        413.00
                                                            1703. 18
                                                                        414.33
                                                            1706. 97
                                                                        415. 90
                                                            1710. 98
                                                                        417. 73
                                                            1715. 58
                                                                        419. 99
                                                            1719. 64
1723. 49
1727. 16
                                                                        422.11
                                                                        424. 28
426. 50
                                                            1730. 98
                                                                        428.98
                                                            1734. 66
1738. 49
1742. 52
                                                                        431.53
                                                                        434. 35
                                                                        437.46
                                                            1746. 99
                                                                        441.08
                                                            1746. 99
1751. 00
1754. 84
1758. 52
1762. 35
1766. 47
1771. 20
                                                                        444. 50
447. 98
                                                                        451.52
                                                                        455. 43
                                                                        459. 93
                                                                        465.38
                                                            1778. 04
                                                                        473.61
                                                            1791. 80
                                                                       490. 56
                                      1. 2193 - N. 8 -- X Y
1643. 73 416. 90
1652. 96 415. 48
Fattore di sicurezza (FS)
                                                                                       Lambda= 0.5389
                                                            1657.64
                                                                        414. 78
                                                            1660. 94
                                                                        414.34
                                                            1663.86
                                                                       413. 99
                                                            1666. 51
                                                                        413.72
                                                            1669. 17
                                                                        413.48
                                                            1671. 92
                                                                        413. 27
                                                            1674. 82 413. 09
                                                            1678. 01 412. 92
                                                                          Pagi na 11
```

1660.74

408. 22

407.73

```
1680.65 412.90
1683. 11
           413.03
1685.38
           413. 30
1687. 90
           413.77
           414. 35
1690. 18
1692. 63
1695. 23
           415. 14
           416. 14
1698.30
           417. 45
1701. 22
           418.70
1704. 02
           419.89
1706. 77
           421.07
1709. 45
           422. 21
1712. 15
1714. 86
           423.37
           424. 52
1717. 59
           425.69
1720. 33
1722. 99
1725. 63
1728. 25
           426.86
           428.03
           429. 23
           430.45
1730. 90
1733. 55
1736. 27
1739. 09
           431.72
           433. 03
           434.40
           435.87
1742. 10
           437.47
1744. 75
           439.00
1747. 30
1749. 73
1752. 32
1754. 77
           440.62
           442.30
           444. 26
           446. 27
1757. 35
           448.53
1760.07
           451.07
1763. 12
           454.06
1765. 91
           456.90
1768. 59
1771. 17
           459.74
           462.60
1773. 81
           465.63
1776. 69
           469.11
1779. 97
1784. 65
           473. 22
           479. 30
1793. 96 491. 59
```

Fattore di sicurezza (FS) 1.2214 - N.9 -- X Y Lambda= 0.5362 1616.17 410.25

Pagi na 12

```
1628. 97
           407. 19
1635.47
           405.67
1640.04
           404. 67
1644. 10
           403.83
1647. 78
           403.14
1651.47
           402.50
1655. 30
           401.88
1659.37
           401.28
1663.86
           400.67
1667.51
           400.34
1670.89
           400. 26
1673.96
           400.42
1677. 43
1680. 53
           400.86
           401.50
1683. 95
           402.47
1687.69
           403.76
1692. 28
1696. 30
           405.56
           407. 24
1700. 07
           408. 92
1703. 65
1707. 29
           410.63
           412.48
1710.81
           414.38
1714. 43
           416. 45
1718. 16
          418. 69
421. 21
1718. 16
1722. 19
1726. 02
1729. 74
1733. 40
1737. 08
          423.65
           426. 10
          428. 55
431. 08
1740. 76
           433.67
1744. 53
           436.38
1748.44
           439. 26
1752.64
           442.41
1756. 31
           445.39
1759.83
           448.51
1763. 18
           451.77
1766. 78
           455.55
1770. 58
           459. 95
1775. 02
          465.47
1781. 51
           474.01
1794. 78
          491. 97
```

Fattore di sicurezza (FS) 1.2250 - N.10 -- X Y Lambda= 0.5333 Pagi na 13

1618. 53 1630. 87 1637. 31 410.54 408.58 407. 55 1641.89 406.83 1646.03 406. 17 1649. 69 1653. 46 405.59 404. 99 1657. 30 404. 38 1661. 34 1665. 62 1669. 15 403.73 403.05 402.66 1672. 45 402.50 1672. 45 1675. 47 1678. 89 1681. 95 1685. 29 1688. 91 1693. 31 402.59 402. 93 403. 47 404.32 405. 46 407.05 408. 55 410. 02 411. 49 1701. 07 1704. 71 1708. 33 1711. 93 1715. 63 1719. 47 1723. 61 1727. 25 1730. 74 1734. 06 1737. 60 1740. 97 1744. 51 1748. 26 1752. 50 1756. 29 1759. 91 1763. 38 413.02 414.60 416. 28 418. 08 420. 08 422. 00 424. 01 426. 13 428. 58 431. 10 433. 96 437. 18 441. 01 444. 60 448. 23 451.91 1766. 96 455. 94 1770. 83 1775. 27 460.58 466. 17 1781.67 474.59 1794. 51 491.85

----- ANALISI DEFICIT DI RESISTENZA ------ # DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *

Analisi Deficit in riferimento a FS(progetto) = 1.100

Sup N.	FS	FTR(kN/m)	FTA(kN/m)	Bilancio(kN/m)	ESI TO
1	1. 201	36634. 2	30505.8	3077. 8	Surpl us
2	1. 209	32500. 4	26890. 0	2921. 4	Surpl us
3	1. 210	35838. 7	29606.6	3271. 4	Surpl us
4	1. 211	38480. 2	31784.6	3517. 2	Surpl us
5	1. 212	37078. 7	30601.5	3417. 0	Surbl us
6	1. 217	32517. 4	26716. 4	3129. 3	Surpl us
7	1. 219	30792. 3	25264.3	3001.6	Surpl us
8	1. 219	27842. 1	22834.8	2723. 8	Surpl us
9	1. 221	37770. 7	30923.8	3754. 5	Surpl us
10	1. 225	36949. 9	30163. 9	3769. 7	Surbl us

Esi to analisi: SURPLUS di RESISTENZA!

Valore minimo di SURPLUS di RESISTENZA (kN/m): 2723.8

Note: FTR --> Forza totale Resistente rispetto alla superficie

di scivolamento (componente Orizzontale)

FTA --> Forza totale Agente rispetto alla superficie di scivolamento (componente Orizzontale)

IMPORTANTE! : II Deficit o il Surplus di resistenza viene espresso in kN

per metro di LARGHEZZA rispetto al fronte della scarpata

TABELLA PARAMETRI CONCI DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X	dx	al pha	W	ru	U	phi '	(c', Cu)
(m)	(m)	(°)	(kN/m)	(-)	(kPa)	(°)	(kPa)
1616̀. 1́86	1. 3̀03́	-2 ì . 47	7. 90	0.`0Ó	` 0. 00	37. ÓO	0.00
1617. 490	1. 303	-21. 47	23. 71	0. 00	0.00	37. 00	0. 00
1618. 793	0. 057	-21. 47	1. 40	0.00	0.00	37.00	0.00
1618. 850	1. 180	-21. 47	35. 73	0. 00	0.00	37. 00	0. 00
1620. 030	1. 303	-21. 47	56. 68	0.00	0.00	37.00	0.00
1621. 333	0. 967	-21. 47	55. 04	0. 00	0.00	37. 00	0. 00
1622. 300	1. 303	-21. 47	91. 73	0.00	0.00	37.00	0.00
1623. 603	1. 039	-21. 47	87. 50	0.00	0.00	37.00	0. 00
1624. 642	1. 303	-21. 47	127. 89	0.00	0. 01	40.00	0.00
1625. 945	1. 303	-21. 47	148. 01	0.00	0. 11	40.00	0.00

Pagi na 15

1627. 249 1628. 552 1629. 855 1630. 140 1631. 179 1632. 483 1633. 786 1635. 089 1636. 393 1636. 615 1637. 918 1639. 221 1640. 525 1640. 891 1642. 194 1643. 497 1644. 376 1645. 679 1646. 982 1647. 887 1649. 190 1650. 390 1650. 560 1651. 012 1652. 316 1653. 619 1654. 464 1654. 500 1655. 803 1657. 107 1658. 239 1659. 543 1660. 846 1662. 149 1662. 926 1664. 230 1665. 533 1666. 836	1. 303 1. 303 0. 284 1. 040 1. 303 1. 303 1. 303 1. 303 1. 303 1. 303 1. 303 1. 303 1. 303 1. 303 0. 878 1. 303 1. 303 0. 904 1. 303 1. 303 1. 303 0. 452 1. 303	-21. 47 -21. 47 -21. 47 -20. 13 -20. 13 -20. 13 -20. 13 -20. 13 -20. 13 -17. 01 -17. 01 -17. 01 -17. 65 -7. 65 -7. 65 -7. 65 -3. 37 -3. 37 -3. 37 -3. 37 -3. 37 -3. 37 -7. 11 -17. 11	168. 14 188. 26 43. 75 167. 86 227. 75 248. 68 269. 06 289. 44 51. 32 312. 30 330. 72 349. 14 101. 38 371. 48 387. 40 270. 08 412. 51 425. 35 302. 64 445. 88 419. 76 60. 24 161. 75 477. 13 492. 80 327. 84 14. 18 518. 19 532. 24 473. 91 557. 77 570. 35 582. 93 353. 62 602. 61 614. 39 626. 16 61. 70	0. 00 0. 00 0. 01 0. 01 0. 02 0. 05 0. 09 0. 13 0. 15 0. 17 0. 19 0. 21 0. 22 0. 24 0. 24 0. 25 0. 26 0. 27 0. 27 0. 27 0. 27 0. 27 0. 27 0. 27 0. 28 0. 28 0. 28 0. 28 0. 28 0. 28 0. 28 0. 29 0. 30 0. 31 0. 31 0. 32 0. 32 0. 32	0. 48 1. 29 2. 86 3. 34 5. 92 11. 52 19. 71 28. 04 34. 67 36. 04 43. 23 50. 29 57. 64 59. 73 65. 57 71. 50 75. 65 81. 58 87. 28 90. 70 94. 54 97. 76 98. 21 99. 42 103. 18 106. 94 109. 64 109. 77 114. 19 119. 03 124. 17 130. 28 135. 39 140. 13 143. 20 148. 06 152. 46 156. 52	40. 00 40. 00	0. 00 0.
1662. 926	1. 303	8. 51	602. 61	0. 31	143. 20	40. 00	0. 00
1664. 230	1. 303	8. 51	614. 39	0. 32	148. 06	40. 00	0. 00
1665. 533	1. 303	8. 51	626. 16	0. 32	152. 46	40. 00	0. 00

1674. 240 1675. 543 1676. 846 1677. 879 1679. 183 1680. 486 1681. 364 1682. 667 1683. 970 1684. 995 1686. 298 1687. 602 1688. 788 1690. 092 1691. 395 1692. 698 1693. 008 1694. 311 1695. 614 1696. 866 1698. 170 1699. 473 1700. 575 1701. 878 1703. 181 1704. 164 1705. 467 1706. 770 1707. 836 1709. 139 1710. 443 1711. 419 1712. 723 1714. 026 1715. 106 1716. 409 1717. 712 1718. 921 1720. 225 1721. 528	1. 303 1. 303	14. 04 14. 04 15. 85 15. 85 17. 62 17. 62 17. 62 17. 62 19. 22 19. 22 20. 57 20. 57 20. 57 21. 63 21. 63 22. 82 22. 82 24. 07 24. 07 24. 07 25. 31 26. 51 26. 51 27. 67 27. 67 28. 75 28. 75 28. 75 29. 70 29. 70	694. 58 703. 10 563. 32 717. 81 725. 23 492. 63 737. 09 743. 41 588. 93 754. 19 759. 50 696. 02 769. 22 773. 67 778. 12 185. 44 783. 28 787. 03 759. 64 794. 00 796. 97 675. 99 802. 03 804. 16 607. 55 807. 47 808. 75 662. 11 810. 66 811. 10 608. 03 811. 45 811. 06 671. 72 809. 94 808. 76 749. 08 806. 13 804. 24 802. 36	0. 34 0. 34 0. 34 0. 35 0. 35 0. 35 0. 35 0. 35 0. 36 0.	179. 19 182. 50 185. 70 188. 43 191. 33 194. 04 195. 97 198. 43 200. 80 202. 72 204. 84 206. 90 208. 79 210. 76 212. 43 213. 87 214. 20 215. 54 216. 95 218. 41 219. 73 220. 82 221. 68 222. 55 223. 29 223. 81 224. 35 224. 78 225. 08 225. 40 225. 30	40. 00 40. 00	0. 00 0. 00
1718. 921	1. 303	29. 70	806. 13	0. 36	223. 29	40.00	0.00

Pagi na 17

1726. 847 1728. 151 1729. 454 1730. 528 1731. 831 1733. 134 1734. 102 1735. 405 1736. 708 1737. 773 1739. 077 1740. 380 1741. 367 1742. 671 1743. 974 1745. 076 1746. 380 1747. 683 1748. 942 1750. 245 1751. 549 1752. 852 1753. 158 1754. 462 1755. 765 1756. 930 1758. 233 1759. 537 1760. 559 1761. 862 1763. 165 1764. 043 1765. 346 1766. 649 1767. 692 1768. 995 1771. 602	1. 303 1. 303	32. 04 32. 04 33. 31 33. 31 33. 31 34. 54 34. 54 35. 75 35. 75 35. 75 36. 91 36. 91 37. 97 37. 97 37. 97 38. 88 38. 88 38. 88 40. 52 40. 52 42. 35 42. 35 43. 91 45. 97 45. 97 45. 97 48. 08 48. 08 48. 08	791. 28 787. 59 645. 90 780. 36 7752. 64 766. 96 761. 24 617. 81 750. 34 743. 60 558. 92 731. 25 723. 49 605. 86 708. 71 700. 00 667. 99 682. 47 672. 92 663. 38 154. 54 650. 80 639. 68 562. 40 617. 69 604. 73 465. 04 580. 60 565. 64 372. 41 539. 60 565. 64 372. 41 539. 60 565. 64 372. 41 539. 60 565. 64 372. 1 539. 60 565. 64 372. 1 539. 60	0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 35 0. 35 0. 35 0. 35 0. 35 0. 35 0. 34 0. 34 0. 34 0. 34 0. 34 0. 33 0. 33 0. 33 0. 33 0. 32 0. 32 0. 32 0. 31 0. 30 0. 30 0. 29 0. 28 0. 27 0. 26 0. 25 0. 24 0. 23	217. 55 216. 04 214. 54 213. 11 211. 35 209. 49 207. 88 205. 75 203. 46 201. 30 198. 74 196. 10 193. 84 190. 92 187. 84 185. 00 181. 67 178. 15 174. 40 170. 37 166. 69 163. 18 162. 32 158. 50 154. 06 149. 26 143. 85 138. 71 134. 11 128. 45 122. 65 118. 09 111. 65 104. 75 97. 99 89. 93 89. 93 82. 61 75. 90	40. 00 40. 00	0. 00 0. 00
1766. 649	1. 043	45. 97	405. 91	0. 27	104. 75	40. 00	0. 00
1767. 692	1. 303	48. 08	490. 84	0. 26	97. 99	40. 00	0. 00
1768. 995	1. 303	48. 08	471. 31	0. 25	89. 93	40. 00	0. 00
1771. 602	0. 005	48. 08	1. 79	0. 23	75. 90	40. 00	0. 00
1771. 607	1. 303	49. 66	431. 14	0. 23	75. 88	40. 00	0. 00
1772. 911	1. 303	49. 66	409. 54	0. 22	68. 23	40. 00	0. 00
1774. 214	1. 303	49. 66	387. 94	0. 20	58. 84	40. 00	0. 00
1775. 517	0. 601	49. 66	171. 65	0. 18	49. 38	40. 00	0. 00
1776. 118	1. 303	50. 98	355. 46	0. 17	44. 98	40. 00	0. 00
1777. 422	0. 478	50. 98	124. 57	0. 15	37. 28	40. 00	0. 00

1777. 900	1. 303	50. 98	322. 85	0. 14	33. 96	40.00	0.00
1779. 203	1. 303	50. 98	298. 27	0. 10	23. 52	40.00	0.00
1780. 507	1. 303	50. 98	273. 68	0.06	14. 41	40.00	0.00
1781. 810	0. 190	50. 98	37. 85	0. 04	8. 51	40.00	0.00
1782. 000	0. 644	50. 98	124. 40	0. 03	7. 84	40.00	0.00
1782. 644	0. 575	51. 62	105. 83	0. 03	6. 29	40.00	0.00
1783. 220	1. 303	51. 62	222. 24	0. 02	5. 17	40.00	0.00
1784. 523	1. 303	51. 62	198. 00	0. 01	3. 10	40.00	0.00
1785. 826	1. 303	51. 62	173. 77	0.00	1. 46	40.00	0.00
1787. 130	1. 303	51. 62	149. 53	0.00	0. 33	40.00	0.00
1788. 433	1. 303	51. 62	125. 30	0.00	0.08	40.00	0.00
1789. 736	0. 334	51. 62	28. 18	0.00	0. 01	40.00	0.00
1790. 070	1. 303	51. 62	94.86	0.00	0.00	37.00	0.00
1791. 373	1. 303	51. 62	70. 62	0.00	0.00	37.00	0.00
1792. 676	1. 303	51. 62	46. 39	0.00	0.00	37.00	0.00
1793. 980	1. 303	51. 62	22. 15	0.00	0.00	37.00	0.00
1795. 283	0. 540	51. 62	2. 08	0.00	0.00	37. 00	0.00

X(m): Ascissa sinistra concio

TABELLA DIAGRAMMA DELLE FORZE DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X	ht	yt	 yt'	E(x)	T(x)	E'	rho(x)
FS_FE (m) (m)	(m)	()	(kN/m)	(kN/m)	(kN)	()
1616. 1. 95	186 0.000	410. 256	-0. 267	0. 000000000E+000	0.000000000E+000	3. 3366393545E-001	0. 040
1617. 1. 95	490 0. 168	409. 912	-0. 267	6. 3909281050E-001	1. 8097058978E-003	6. 4704639666E-001	0. 040
1618. 1. 95		409. 560	-0. 268	1. 6866252414E+000	1. 3080988611E-002	1. 0202256031E+000	0. 040

1618. 850	0.338	409. 547	-0. 208	1. 7453409516E+000	1. 4043837684E-002	1. 0427418954E+000	0.040
1. 951 1620. 030	0. 930 0. 558	409. 302	-0. 212	3. 2943073261E+000	4. 9400636697E-002	1. 6895173864E+000	0.040
1. 942 1621. 333	0. 930 0. 790	409. 022	-0. 207	6. 0387682643E+000	1. 7082842706E-001	2. 7474255131E+000	0. 045
1. 972	0. 940						
1622. 300 2. 028	0. 982 0. 969	408. 833	-0. 207	9. 1547103195E+000	3. 5779407506E-001	3. 9711742553E+000	0. 062
1623. 603 2. 171	1. 214 1. 075	408. 553	-0. 218	1. 5644512677E+001	8. 7422522721E-001	6. 5121378950E+000	0. 089
1624. 642	1. 392	408. 323	-0. 206	2. 3675968825E+001	1. 6493874472E+000	9. 6698644990E+000	0. 111
2. 316 1625. 945	1. 283 1. 654	408. 072	-0. 192	3. 9446203094E+001	3. 3338503807E+000	1. 5966496713E+001	0. 133
2. 447	1. 448						
1627. 249 2. 566	1. 917 1. 614	407. 822	-0. 182	6. 5295080703E+001	6. 4971827276E+000	2. 6170569970E+001	0. 155
1628. 552	2. 204	407. 596	-0. 170	1. 0766379015E+002	1. 2217265295E+001	4. 2895993085E+001	0. 176
2. 693 1629. 855	1. 745 2. 498	407. 378	-0. 167	1. 7711003720E+002	2. 2583689076E+001	6. 8075944679E+001	0. 197
2. 809	1. 832	407.376	-0. 107	1. //11003/20L+002	2. 2303007070L+001	0. 00/39440/9E+001	0. 197
1630. 140	2.563	407. 331	-0. 169	1. 9738743696E+002	2. 5756486478E+001	7. 5791105353E+001	0. 201
2. 832 1631. 179	1. 844 2. 767	407. 154	-0. 165	2. 9325118270E+002	4. 1353332464E+001	1. 1599427666E+002	0. 217
2. 909	1. 874						
1632. 483 2. 979	3. 035 1. 883	406. 944	-0. 149	4. 8330499805E+002	7. 4220789801E+001	1. 5618919817E+002	0. 236
1633. 786	3. 334	406. 766	-0. 132	7. 0038217891E+002	1. 1633168528E+002	1. 8441672159E+002	0. 255
3. 010	1. 865	407 700	0.110	0 (4045044(05 000	4 707507/4045 000	0.45/40//5045.000	0.074
1635. 089 3. 006	3. 646 1. 850	406. 600	-0. 119	9. 6401534460E+002	1. 7275276121E+002	2. 1564866521E+002	0. 274
1636. 393	3. 979	406. 455	-0. 110	1. 2625033558E+003	2. 4250956755E+002	2. 2386418420E+002	0. 292
2. 955 1636. 615	1. 837 4. 037	406. 432	-0. 097	1. 3119965899E+003	2. 5500093901E+002	2. 2413577745E+002	0. 295
2. 943	1. 833	400. 432	-0.097	1. 31177030771+003	2. 3300073701L+002	2. 2413377743L+002	0. 293
1637. 918	4. 311	406. 307	-0. 088	1. 6129171107E+003	3. 3366266155E+002	2. 2840363167E+002	0. 314
2. 846 1639. 221	1. 805 4. 606	406. 204	-0. 071	1. 9073655347E+003	4. 1719023080E+002	2. 2716371163E+002	0. 331
2. 718	1. 774	400. 204			4. 1717023000L1002		
1640. 525 2. 573	4. 923 1. 740	406. 122	-0.060	2. 2050540146E+003	5. 0714700621E+002	2. 2270112561E+002	0. 347
2. 573 1640. 891	5. 016	406. 103	-0. 037	2. 2859957280E+003	5. 3272590173E+002	2. 2307394083E+002	0. 352
2.529	1. 730	407.070		0 50500007755 000	/ 2010/202005 222	0.0/745/55505.000	
1642. 194 2. 361	5. 272 1. 694	406. 060	-0. 023	2. 5858999775E+003	6. 3010423800E+002	2. 2671565553E+002	0. 367
2.001	1.071						

1643. 497	5. 553	406. 042	-0.004	2. 8769647052E+003	7. 3023658749E+002	2. 1385094739E+002	0. 382
2. 185 1644. 376	1. 657 5. 763	406. 051	0. 021	3. 0592045305E+003	7. 9678855132E+002	2. 0855058234E+002	0. 392
2. 075 1645. 679	1. 633 5. 974	406. 088	0. 038	3. 3331113433E+003	9. 0105021015E+002	2. 0953332944E+002	0. 406
1. 930 1646. 982	1. 595 6. 211	406. 150	0. 055	3. 6053851509E+003	1. 0093193615E+003	2. 1056903177E+002	0. 420
1. 803	1. 559						
1647. 887 1. 729	6. 391 1. 535	406. 208	0. 075	3. 7968286210E+003	1. 0878665695E+003	2. 1231722376E+002	0. 429
1649. 190	6. 575	406. 315	0.094	4. 0746650310E+003	1. 2031782230E+003	2. 1249981402E+002	0. 441
1. 639 1650. 390	1. 503 6. 775	406. 444	0. 108	4. 3289423140E+003	1. 3131843341E+003	2. 1416887445E+002	0. 452
1. 574 1650. 560	1. 474 6. 804	406. 464	0. 123	4. 3654061840E+003	1. 3292308894E+003	2. 1308538758E+002	0. 454
1. 566	1. 470						
1651. 012 1. 544	6. 888 1. 459	406. 521	0. 139	4. 4600795754E+003	1. 3712996132E+003	2. 1012062639E+002	0. 458
1652. 316	7. 053	406. 707	0. 155	4. 7368681111E+003	1. 4971758517E+003	2. 1276998403E+002	0. 470
1. 489 1653. 619	1. 431 7. 247	406. 924	0. 180	5. 0146970302E+003	1. 6282316039E+003	2. 1414711421E+002	0. 483
1. 442	1. 405						
1654. 464	7. 402	407. 093	0. 200	5. 1961718855E+003	1. 7163155091E+003	2. 1564562728E+002	0. 491
1. 414 1654. 500	1. 389 7. 406	407. 100	0. 214	5. 2039732706E+003	1. 7201068965E+003	2. 1565695957E+002	0. 491
1. 413	1. 388						
1655. 803 1. 374	7. 583 1. 366	407. 380	0. 226	5. 4838388833E+003	1. 8571122749E+003	2. 1504752183E+002	0. 504
1657. 107	7. 788	407. 690	0. 247	5. 7645274755E+003	2. 0000575788E+003	2. 1164379460E+002	0. 516
1. 339 1658. 239	1. 344 7. 990	407. 981	0. 267	6. 0005652954E+003	2. 1253876618E+003	2. 0767487544E+002	0. 527
1. 308	1. 327	407. 701	0. 207	0.0003032734E+003	2. 1253676616E+003	2.07074073441+002	0. 327
1659. 543	8. 186	408. 340	0. 286	6. 2701283208E+003	2. 2717989734E+003	2. 0579502523E+002	0. 539
1. 273 1660. 846	1. 308 8. 410	408. 727	0. 306	6. 5370014550E+003	2. 4215820722E+003	2. 0364824907E+002	0. 551
1. 248 1662. 149	1. 290 8. 658	409. 137	0. 321	6. 8009685805E+003	2. 5745418436E+003	1. 9985463822E+002	0. 563
1. 224	1. 274						
1662. 926 1. 211	8. 819 1. 264	409. 395	0. 335	6. 9550597773E+003	2. 6655386873E+003	1. 9565855191E+002	0. 569
1664. 230	9.064	409. 835	0. 331	7. 2043873464E+003	2. 8189949741E+003	1. 8744908194E+002	0. 581
1. 193 1665. 533	1. 250 9. 291	410. 258	0. 328	7. 4436744342E+003	2. 9722838263E+003	1. 8250258953E+002	0. 592
1. 178	1. 235	410. 230	0. 326	7. 443074434ZL+003	2. 7722030203L+003	1. 0200200703L+002	0. 372

1666. 836	9.530	410. 691	0. 333	7. 6801082155E+003	3. 1266597340E+003	1. 7870468239E+002	0. 603
1. 164 1666. 964	1. 222 9. 553	410. 734	0. 343	7. 7027918226E+003	3. 1417840493E+003	1. 7790878708E+002	0. 604
1. 163 1668. 267	1. 221 9. 766	411. 182	0. 339	7. 9275531120E+003	3. 2954094135E+003	1. 6818916311E+002	0. 616
1. 151 1669. 570	1. 209 9. 966	411. 617	0. 338	8. 1412025600E+003	3. 4419189747E+003	1. 6172523158E+002	0. 626
1. 140	1. 199						
1670. 708 1. 131	10. 150 1. 190	412. 006	0. 349	8. 3230740851E+003	3. 5687721101E+003	1. 5607270596E+002	0. 636
1672. 012 1. 121	10. 333 1. 181	412. 469	0. 359	8. 5209198038E+003	3. 7113099480E+003	1. 4923970594E+002	0. 646
1673. 315	10. 527	412. 942	0. 366	8. 7120901686E+003	3. 8481197185E+003	1. 4450788541E+002	0. 654
1. 112 1674. 240	1. 174 10. 670	413. 284	0. 378	8. 8442871450E+003	3. 9432731145E+003	1. 3978898208E+002	0. 661
1. 106 1675. 543	1. 169 10. 845	413. 785	0. 385	9. 0206383423E+003	4. 0740276899E+003	1. 3264450740E+002	0. 669
1. 098	1. 163	413.765	0.365	9. U2UU303423E+UU3	4. 0/402/0099E+003	1. 3204430740E+002	0.009
1676. 846 1. 092	11. 022 1. 157	414. 288	0. 388	9. 1900453093E+003	4. 2022470245E+003	1. 2557828222E+002	0. 677
1677. 879	11. 168	414. 692	0. 398	9. 3161649674E+003	4. 3000430932E+003	1. 1571486839E+002	0. 683
1. 087 1679. 183	1. 153 11. 324	415. 218	0. 422	9. 4564975481E+003	4. 4146097375E+003	1. 0447159861E+002	0. 691
1. 083	1. 148	41F 701	0.420	0 50040/14075.000	4 524050/2455.002	0.7501/5/2205.001	0.700
1680. 486 1. 079	11. 527 1. 144	415. 791	0. 429	9. 5884861427E+003	4. 5248586345E+003	9. 7501656230E+001	0. 698
1681. 364	11. 640	416. 154	0. 417	9. 6718451749E+003	4. 5949695070E+003	8. 9530285662E+001	0. 703
1. 076 1682. 667	1. 142 11. 773	416. 700	0. 423	9. 7780188637E+003	4. 6902808009E+003	7. 7925450315E+001	0. 710
1. 073	1. 138	417 255	0 400	0.0740/07/105.003	4 70052472205.002	7 0/200010275 001	0.71/
1683. 970 1. 070	11. 913 1. 135	417. 255	0. 423	9. 8749697610E+003	4. 7805347330E+003	7. 0630801937E+001	0. 716
1684. 995	12. 019	417. 686	0. 425	9. 9443201292E+003	4. 8475602486E+003	6. 4835759874E+001	0. 722
1. 068 1686. 298	1. 133 12. 124	418. 245	0. 435	1. 0024111868E+004	4. 9244037075E+003	5. 7837107886E+001	0. 727
1. 065 1687. 602	1. 131 12. 244	418. 820	0. 436	1. 0095081383E+004	4. 9957757127E+003	5. 0927197268E+001	0. 733
1. 063	1. 129						
1688. 788 1. 062	12. 342 1. 127	419. 331	0. 434	1. 0151696743E+004	5. 0551664888E+003	4. 4351462850E+001	0. 737
1690. 092	12. 421	419. 900	0.442	1. 0204681420E+004	5. 1144989083E+003	3. 6759659867E+001	0. 741
1. 060 1691. 395	1. 126 12. 515	420. 483	0. 444	1. 0247516410E+004	5. 1671302294E+003	2. 9535975641E+001	0. 745
1. 059	1. 124	720. 403	0. 444	1. 024/310410L+004	5. 10/1302274LT003	2. 7000770041L±001	0.743

1692. 698	12.599	421. 056	0. 436	1. 0281671451E+004	5. 2128929961E+003	2. 2212394045E+001	0. 749
1. 058 1693. 008	1. 123 12. 613	421. 186	0. 441	1. 0288253029E+004	5. 2227606180E+003	2. 0336107659E+001	0. 750
1. 058 1694. 311	1. 123 12. 678	421. 768	0. 448	1. 0309665444E+004	5. 2601228528E+003	1. 2224611822E+001	0. 754
1. 057 1695. 614	1. 122 12. 748	422. 355	0. 454	1. 0320118347E+004	5. 2903654986E+003	4. 2027416857E+000	0. 758
1. 056	1. 121						
1696. 866 1. 055	12. 825 1. 120	422. 928	0. 465	1. 0320788629E+004	5. 3125988550E+003	-2. 8165378120E+000	0. 762
1698. 170 1. 054	12. 892 1. 120	423. 543	0. 472	1. 0312570503E+004	5. 3296521277E+003	-9. 2858070294E+000	0. 765
1699. 473	12. 958	424. 158	0. 471	1. 0296583755E+004	5. 3407268493E+003	-1. 5347534402E+001	0. 768
1. 054 1700. 575	1. 119 13. 013	424. 677	0. 481	1. 0276806062E+004	5. 3451141444E+003	-2. 0635678561E+001	0. 770
1. 053 1701. 878	1. 118 13. 069	425. 315	0. 490	1. 0245773483E+004	5. 3445860653E+003	-2. 6599320320E+001	0. 772
1. 053	1. 118						
1703. 181 1. 052	13. 126 1. 117	425. 954	0. 490	1. 0207470872E+004	5. 3381653082E+003	-3. 2556355887E+001	0. 774
1704. 164	13. 168	426. 435	0. 489	1. 0173141685E+004	5. 3292230864E+003	-3. 7065782220E+001	0. 775
1. 052 1705. 467	1. 117 13. 188	427. 072	0. 489	1. 0121164591E+004	5. 3122663415E+003	-4. 2497738702E+001	0. 777
1. 052 1706. 770	1. 116 13. 209	427. 709	0. 489	1. 0062364839E+004	5. 2898212955E+003	-4. 8337371850E+001	0. 778
1. 051	1. 116						
1707. 836 1. 051	13. 226 1. 115	428. 229	0. 497	1. 0008055687E+004	5. 2666556203E+003	-5. 2993206246E+001	0. 779
1709. 139	13. 233	428. 886	0. 504	9. 9357652156E+003	5. 2336000088E+003	-5. 7887907423E+001	0. 780
1. 051 1710. 443	1. 114 13. 240	429. 543	0. 504	9. 8571620168E+003	5. 1954305492E+003	-6. 3271722306E+001	0. 780
1. 050 1711. 419	1. 114 13. 245	430. 036	0. 513	9. 7932064082E+003	5. 1627090979E+003	-6. 7159499237E+001	0. 781
1. 050	1. 113	430. 030		7. 7732004002L+003	J. 1027070777L+003	-0. /137477237E+001	
1712. 723 1. 049	13. 239 1. 112	430. 713	0. 520	9. 7027736026E+003	5. 1145166705E+003	-7. 1660159009E+001	0. 781
1714. 026	13. 233	431. 390	0. 520	9. 6064132607E+003	5. 0615221034E+003	-7. 6905593309E+001	0. 781
1. 049 1715. 106	1. 111 13. 227	431. 951	0. 528	9. 5207041010E+003	5. 0133365647E+003	-8. 1084856046E+001	0. 781
1. 048 1716. 409	1. 110 13. 208	432. 647	0. 534	9. 4123229286E+003	4. 9508957713E+003	-8. 5272037647E+001	0. 780
1. 047	1. 109	422 242	0 524	0.00040051005.000	4 00405014/25 002	0.00103/71175.001	0.770
1717. 712 1. 047	13. 189 1. 108	433. 343	0. 534	9. 2984295133E+003	4. 8840591463E+003	-8. 9919267117E+001	0. 779

1718. 921	13. 172	433. 989	0. 541	9. 1868899217E+003	4. 8177516315E+003	-9. 3854351816E+001	0. 778
1. 046 1720. 225	1. 107 13. 141	434. 702	0. 547	9. 0623383343E+003	4. 7424759272E+003	-9. 6702371563E+001	0. 776
1. 045 1721. 528	1. 106 13. 111	435. 415	0. 547	8. 9348204231E+003	4. 6644302623E+003	-9. 9653516714E+001	0. 773
1. 044 1722. 831	1. 104 13. 081	436. 128	0. 542	8. 8025762252E+003	4. 5828377831E+003	-1. 0159536358E+002	0. 770
1. 042	1. 103						
1723. 046 1. 042	13. 068 1. 102	436. 238	0. 527	8. 7807595325E+003	4. 5692277760E+003	-1. 0225004515E+002	0. 770
1724. 349 1. 041	12. 982 1. 101	436. 929	0. 532	8. 6424822822E+003	4. 4825693076E+003	-1. 0803694647E+002	0. 769
1725. 653	12. 901	437. 625	0. 538	8. 4991447336E+003	4. 3921285738E+003	-1. 1371490176E+002	0. 767
1. 039 1726. 847	1. 099 12. 835	438. 272	0. 551	8. 3591753321E+003	4. 3039079912E+003	-1. 1903216453E+002	0. 765
1. 037 1728. 151	1. 097 12. 750	439. 003	0. 561	8. 2013485739E+003	4. 2037980259E+003	-1. 2268001437E+002	0. 762
1, 035	1. 095	439.003	0. 361	0. 2013403/39E+003	4. 203/900239E+003	-1. 2200001437E+002	0.762
1729. 454 1. 033	12. 665 1. 093	439. 734	0. 561	8. 0393911406E+003	4. 1007142655E+003	-1. 2624857902E+002	0. 758
1730. 528	12. 595	440. 336	0. 573	7. 9021176869E+003	4. 0132779940E+003	-1. 2861605130E+002	0. 755
1. 031 1731. 831	1. 092 12. 498	441. 096	0. 585	7. 7333282490E+003	3. 9053392428E+003	-1. 3091056816E+002	0. 751
1. 028	1.089						
1733. 134 1. 026	12. 407 1. 087	441. 861	0. 589	7. 5608793000E+003	3. 7949455000E+003	-1. 3459942348E+002	0. 747
1734. 102	12. 344	442. 433	0.600	7. 4290387835E+003	3. 7108316588E+003	-1. 3688605874E+002	0.743
1. 024 1735. 405	1. 085 12. 236	443. 222	0. 609	7. 2495941437E+003	3. 5956951191E+003	-1. 3893869749E+002	0. 739
1. 021	1. 083	443. 222	0.007	7. 2473741437L+003	3. 3730731171L+003	-1.30730077472+002	0.737
1736. 708	12. 136	444. 020	0.602	7. 0668738516E+003	3. 4772723492E+003	-1. 4279711802E+002	0. 733
1. 019 1737. 773	1. 080 12. 032	444. 648	0. 590	6. 9125286993E+003	3. 3782741540E+003	-1. 4511003992E+002	0. 728
1. 016 1739. 077	1. 078 11. 863	445. 417	0. 608	6. 7231048858E+003	3. 2564215754E+003	-1. 4633578875E+002	0. 722
1. 013	1. 075	445.417	0.000	0. 7231040030L+003	3. 2304213734L+003	-1.4033378873L+002	0.722
1740. 380 1. 011	11. 739 1. 072	446. 232	0. 627	6. 5310821194E+003	3. 1334427396E+003	-1. 4927304053E+002	0. 716
1741. 367	11. 651	446. 854	0. 636	6. 3822240574E+003	3. 0391816562E+003	-1. 5088341861E+002	0. 711
1. 008 1742. 671	1. 070 11. 505	447. 688	0. 645	6. 1853323187E+003	2. 9155625135E+003	-1. 5189407330E+002	0. 704
1. 005 1743. 974	1. 067 11. 373	448. 535	0. 643	5. 9862889601E+003	2. 7911873573E+003	-1. 5490816638E+002	0. 697
1. 002	1. 064	440.000	0.043	J. 7002007001E+003	2. /7110/33/3E+003	- 1. 54700 T0030E+002	0.077

1745. 076	11. 246	449. 236	0. 641	5. 8134915804E+003	2. 6845504196E+003	-1. 5900275143E+002	0. 691
0. 999 1746. 380	1. 061 11. 071	450. 078	0. 652	5. 6028018889E+003	2. 5558582931E+003	-1. 6197016827E+002	0. 683
0. 996 1747. 683	1. 058 10. 912	450. 936	0. 654	5. 3912916028E+003	2. 4277232444E+003	-1. 6249922320E+002	0. 675
0. 992 1748. 942	1. 056 10. 748	451. 754	0. 650	5. 1864263332E+003	2. 3052491327E+003	-1. 6395172648E+002	0. 667
0. 988	1. 053						
1750. 245 0. 984	10. 544 1. 051	452. 602	0. 655	4. 9710633982E+003	2. 1778839116E+003	-1. 6428153329E+002	0. 657
1751. 549 0. 980	10. 353 1. 049	453. 461	0. 657	4. 7582014298E+003	2. 0532564190E+003	-1. 6314422918E+002	0. 646
1752. 852	10. 156	454. 315	0.649	4. 5458030516E+003	1. 9309898447E+003	-1. 6075109978E+002	0. 636
0. 976 1753. 158	1. 048 10. 100	454. 505	0. 666	4. 4967188912E+003	1. 9027680353E+003	-1. 6038152394E+002	0. 634
0. 975 1754. 462	1. 048 9. 866	455. 386	0. 675	4. 2868515287E+003	1. 7817382157E+003	-1. 6222004863E+002	0. 624
0. 972	1. 048						
1755. 765 0. 969	9. 630 1. 049	456. 265	0. 677	4. 0738675623E+003	1. 6604956712E+003	-1. 6645534109E+002	0. 613
1756. 930 0. 967	9. 427 1. 050	457. 057	0. 692	3. 8767708410E+003	1. 5515973783E+003	-1. 6725208168E+002	0. 603
1758. 233	9. 156	457. 974	0. 734	3. 6615868157E+003	1. 4340329117E+003	-1. 6346834214E+002	0. 591
0. 966	1. 053	437. 774	0.754	3. 001300013721003	1. 434032711721003	1. 034003421421002	0. 071
1759. 537	8. 963	458. 970	0. 764	3. 4506656444E+003	1. 3198731853E+003	-1. 6005113319E+002	0. 578
0. 967 1760. 559	1. 058 8. 814	459. 751	0. 769	3. 2885526803E+003	1. 2324432684E+003	-1. 5654112163E+002	0. 566
0. 969	1. 063	459. 751	0.709	3. 2885520803E+003	1. 2324432084E+003	-1. 3034112103E+002	0. 500
1761. 862	8. 552	460. 758	0. 789	3. 0880413047E+003	1. 1262683185E+003	-1. 5198409108E+002	0. 552
0. 974	1. 072	4/4 000	0.007	0.00000000705.000	1 00505//0005 000	1 5004//10005 000	0. 50/
1763. 165 0. 983	8. 334 1. 082	461. 808	0. 807	2. 8923829378E+003	1. 0252566823E+003	-1. 5024661980E+002	0. 536
1764. 043	8. 191	462. 519	0. 845	2. 7604639555E+003	9. 5926907840E+002	-1. 4805621993E+002	0. 527
0. 991	1. 090						
1765. 346	7. 973	463. 650	0. 868	2. 5719004255E+003	8. 6335560176E+002	-1. 4232688007E+002	0. 510
1. 006 1766. 649	1. 106 7. 756	464. 781	0. 843	2. 3894672083E+003	7. 7267047660E+002	-1. 3767373197E+002	0. 492
1. 024	1. 126	101.701	0.010		7. 720701700021002	1. 070707017721002	0. 172
1767. 692	7.524	465. 627	0. 827	2. 2478401807E+003	7. 0461376008E+002	-1. 3359844260E+002	0. 477
1. 043 1768. 995	1. 144 7. 165	466. 720	0. 880	2. 0773577040E+003	6. 2524884638E+002	-1. 3585649980E+002	0. 457
1. 071	1. 168	400.720	0.000	2.07733770402+003	0. 2324004030L+002	- 1. 3303047700L+002	0.437
1770. 299	6. 915	467. 922	0. 907	1.8937094678E+003	5. 4617352549E+002	-1. 3903902363E+002	0. 438
1. 105	1. 195						

1771.602	6. 626	469. 084	0. 891	1. 7149312567E+003	4. 7321151450E+002	-1. 3956861294E+002	0. 419
1. 143 1771. 607	1. 224 6. 624	469. 088	0.880	1. 7141963320E+003	4. 7292629526E+002	-1. 3955978839E+002	0. 418
1. 144 1772. 911	1. 225 6. 236	470. 235	0. 872	1. 5382765331E+003	4. 0416057717E+002	-1. 3448545520E+002	0. 399
1. 189 1774. 214	1. 257 5. 828	471. 362	0. 858	1. 3636394561E+003	3. 3989296005E+002	-1. 2800741838E+002	0. 379
1. 251	1. 294						
1775. 517 1. 324	5. 403 1. 333	472. 471	0. 843	1. 2046056495E+003	2. 8392011796E+002	-1. 1869758148E+002	0. 358
1776. 118 1. 361	5. 191 1. 352	472. 967	0.872	1. 1341736492E+003	2. 6017713256E+002	-1. 1562866330E+002	0. 349
1777. 422	4. 747	474. 131	0.879	9. 8781161209E+002	2. 1296932722E+002	-1. 1004722719E+002	0. 328
1. 445 1777. 900	1. 395 4. 557	474. 532	0. 868	9. 3557273167E+002	1. 9693473633E+002	-1. 0740774977E+002	0. 320
1. 479	1. 415						
1779. 203 1. 580	4. 094 1. 475	475. 677	0. 881	8. 0202504169E+002	1. 5804251601E+002	-9. 8973931251E+001	0. 299
1780. 507	3. 637	476. 829	0. 878	6. 7758206585E+002	1. 2404702299E+002	-9. 1263956902E+001	0. 277
1. 695 1781. 810	1. 544 3. 167	477. 967	0. 878	5. 6413160138E+002	9. 5128429821E+001	-7. 7757764399E+001	0. 255
1. 808	1. 625						
1782. 000 1. 824	3. 106 1. 638	478. 140	0. 900	5. 4961334730E+002	9. 1551942667E+001	-7. 7002023111E+001	0. 252
1782. 644	2. 889	478. 718	0. 917	4. 9870677100E+002	7. 9348734138E+001	-7. 8625971336E+001	0. 241
1. 880	1. 685						
1783. 220 1. 935	2. 702 1. 732	479. 257	0. 932	4. 5367088568E+002	6. 8968334937E+001	-7. 5206404667E+001	0. 230
1784. 523	2. 267	480. 469	0. 961	3. 6467846042E+002	4. 9537515203E+001	-6. 4649437095E+001	0. 206
2. 069 1785. 826	1. 843 1. 916	481. 763	1. 009	2. 8515225547E+002	3. 3654668060E+001	-5. 6374498839E+001	0. 180
2. 214	1. 985	1011.700	1.007	2. 00.102200 172.002	0.00010000001	0.007117000721001	0. 100
1787. 130	1. 606	483. 099	1. 082	2. 1772972042E+002	2. 1530121469E+001	-4. 9534060992E+001	0. 152
2. 416 1788. 433	2. 157 1. 445	484. 583	1. 154	1. 5603416130E+002	1. 1902708180E+001	-4. 4609832506E+001	0. 119
2. 738	2. 423	407 407	4 445	4 044470707/5 000	F 00000/4070F 000	0.00/050/0055.004	0.000
1789. 736 3. 126	1. 322 2. 791	486. 106	1. 115	1. 0144737976E+002	5. 3209061378E+000	-3. 0268526385E+001	0. 083
1790. 070	1. 203	486. 409	0. 908	9. 2340697191E+001	4. 4035355619E+000	-2. 6533640449E+001	0. 076
3. 212 1791. 373	2. 703 0. 741	487. 592	1. 015	6. 1637466179E+001	1. 9055778331E+000	-2. 3292640223E+001	0. 049
3. 645	3. 169	100 05/		0.4/040705045.555	E (0.40.407000E 555	4 0/0///00705	
1792. 676 5. 727	0. 559 4. 971	489. 056	1. 120	3. 1624873501E+001	5. 6848497283E-001	-1. 9634668372E+001	0. 040

1793. 980	0. 368	490. 510	1. 089	1. 0456704717E+001	1. 0849776210E-001	-1. 1840896478E+001	0.040
50.000	25. 478						
1795. 283	0. 107	491. 895	1. 089	7. 5976864229E-001	4. 8507209920E-003	-3. 1742775541E+000	0. 040
1 25/	1 870						

X(m): Ascissa sinistra concio

: Altezza linea di thrust da nodo sinistro base concio ht(m)

yt(m)

: coordinata Y linea di trust : gradiente pendenza locale linea di trust yt'(-)

E(x)(kN/m) : Forza Normale interconcio

T(x)(kN/m) : Forza Tangenziale interconcio

E' (kN) : derivata Forza normale interconcio

Rho(x) (-) : fattore mobilizzazione resistenza al taglio verticale interconcio ZhU et al. (2003) FS_FEM(x) (-) : fattore di sicurezza locale stimato (locale in X) by qFEM

FS_SRM(x) (-): fattore di sicurezza locale stimato (locale in X) by SRM Procedure

TABELLA SFORZI DI TAGLIO DISTRIBUITI LUNGO SUPERFICIE INDIVIDUATA CON MINOR FS

X (m)	dx (m)	dl (m)	al pha (°)	TauStress (kPa)	TauF (kN/m)	TauStrength (kPa)	TauS (kN/m)
1616. 186	1. 303	1. 401	-21, 472	-2. 003	-2. 805	3. 978	5. 571
1617. 490	1. 303	1. 401	-21. 472	-6. 009	-8. 415	11. 938	16. 720
1618. 793	0. 057	0. 061	-21. 472	-8. 099	-0. 496	16. 097	0. 986
1618. 850	1. 180	1. 268	-21. 472	-10.000	-12. 680	19. 885	25. 215
1620. 030	1. 303	1. 401	-21. 472	-14. 363	-20. 116	28. 614	40. 075
1621. 333	0. 967	1. 039	-21. 472	-18. 803	-19. 532	37. 537	38. 992
1622. 300	1. 303	1. 401	-21. 472	-23. 244	-32. 554	46. 568	65. 220
1623. 603	1. 039	1. 116	-21. 472	-27. 825	-31. 052	56. 035	62. 534
1624. 642	1. 303	1. 401	-21. 472	-32. 406	-45. 385	73. 101	102. 381
1625. 945	1. 303	1. 401	-21. 472	-37. 505	-52. 527	85. 581	119. 858
1627. 249	1. 303	1. 401	-21. 472	-42. 604	-59. 668	98. 766	138. 325
1628. 552	1. 303	1. 401	-21. 472	-47. 703	-66. 809	113. 411	158. 835
1629. 855	0. 284	0. 306	-21. 472	-50. 809	-15. 527	122. 599	37. 465
1630. 140	1. 040	1. 107	-20. 126	-50. 449	-55. 866	134. 068	148. 463
1631. 179	1. 303	1. 388	-20. 126	-54. 608	-75. 800	153. 309	212. 806
1632. 483	1. 303	1. 388	-20. 126	-59. 624	-82. 763	168. 534	233. 939
1633. 786	1. 303	1. 388	-20. 126	-64. 510	-89. 546	185. 662	257. 714
1635. 089	1. 303	1. 388	-20. 126	-69. 397	-96. 329	201. 835	280. 164
1636. 393	0. 222	0. 236	-20. 126	-72. 256	-17. 081	206. 175	48. 738

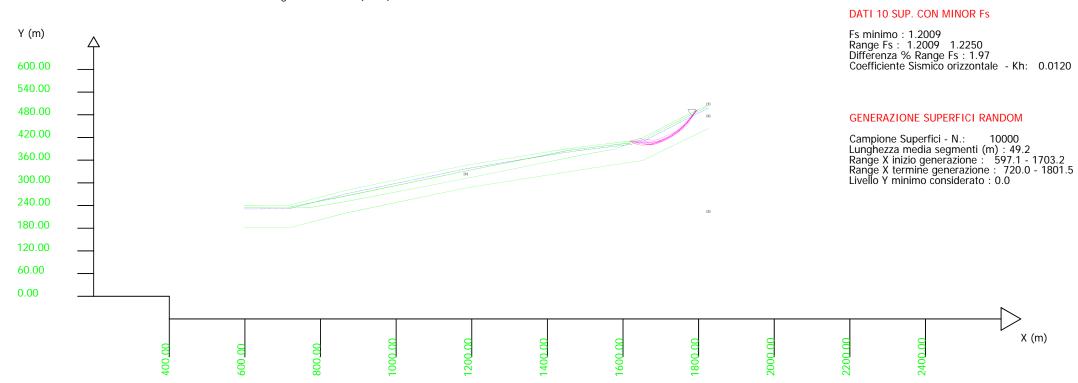
1636. 615	1. 303	1. 363	-17. 012	-64. 410	-87. 789	220. 871	301. 039
1637. 918	1. 303	1. 363	-17. 012	-68. 208 73. 004	-92. 966	229. 844	313. 269
1639. 221 1640. 525	1. 303 0. 366	1. 363 0. 383	-17. 012 -17. 012	-72. 006 -74. 439	-98. 142 -28. 498	240. 241 241. 980	327. 440 92. 640
1640. 891	1. 303	1. 337	-12. 905	-58. 798	-78. 619	256.833	343. 411
1642. 194	1. 303	1. 337	-12. 905	-61. 318	-81. 988 57. 150	263. 940	352. 914
1643. 497 1644. 376	0. 878 1. 303	0. 901 1. 315	-12. 905 -7. 648	-63. 427 -38. 019	-57. 159 -49. 996	266. 009 276. 429	239. 719 363. 511
1645. 679	1. 303	1. 315	-7. 648	-39. 202	-51. 552	282. 604	371. 631
1646. 982	0. 904	0. 912	-7. 648	-40. 205	-36. 680	288. 437	263. 151
1647. 887 1649. 190	1. 303 1. 200	1. 306 1. 202	-3. 373 -3. 373	-16. 000 -16. 358	-20. 889 -19. 666	290. 389 296. 463	379. 128 356. 405
1650. 390	0. 170	0. 170	-3. 373	-16. 572	-2. 822	300. 070	51. 100
1650. 560	0. 452	0. 453	-3. 373	-16. 728	-7. 578	301. 228	136. 466
1651. 012 1652. 316	1. 303 1. 303	1. 304 1. 304	0. 970 0. 970	10. 591 10. 939	13. 806 14. 259	302. 665 312. 847	394. 528 407. 800
1653. 619	0. 845	0. 845	0. 970	10. 939	9. 486	312. 047	271. 279
1654. 464	0. 036	0.036	4. 546	35. 650	1. 294	312.049	11. 323
1654. 500	1. 303	1. 307	4. 546	36. 154	47. 269	316. 780	414. 170
1655. 803 1657. 107	1. 303 1. 133	1. 307 1. 136	4. 546 4. 546	37. 134 38. 050	48. 550 43. 230	325. 418 330. 479	425. 464 375. 467
1658. 239	1. 303	1. 313	7. 112	57. 635	75. 700	325. 120	427. 023
1659. 543	1. 303	1. 313	7. 112	58. 935	77. 407	329. 709	433.050
1660. 846 1662. 149	1. 303 0. 777	1. 313 0. 783	7. 112 7. 112	60. 235 61. 273	79. 115 47. 992	335. 042 337. 225	440. 055 264. 133
1662. 926	1. 303	1. 318	8. 510	73. 094	96. 326	334. 573	440. 912
1664. 230	1. 303	1. 318	8. 510	74. 522	98. 208	337. 815	445. 185
1665. 533	1. 303	1. 318	8. 510	75. 951	100. 090	342.066	450. 787
1666. 836 1666. 964	0. 127 1. 303	0. 129 1. 324	8. 510 10. 232	76. 734 91. 343	9. 863 120. 974	343. 059 336. 711	44. 095 445. 936
1668. 267	1. 303	1. 324	10. 232	92.884	123. 014	337. 035	446. 365
1669. 570	1. 138	1. 156	10. 232	94. 327	109. 088	339. 376	392. 484
1670. 708 1672. 012	1. 303 1. 303	1. 333 1. 333	12. 119 12. 119	111. 249 112. 855	148. 299 150. 440	329. 953 329. 792	439. 839 439. 625
1673. 315	0. 925	0. 946	12. 119	114. 229	108. 031	330. 694	312. 751
1674. 240	1. 303	1. 343	14. 037	131. 416	176. 550	320. 139	430. 088
1675. 543 1676. 846	1. 303 1. 033	1. 343 1. 065	14. 037 14. 037	133. 028 134. 472	178. 715 143. 186	321. 512 321. 559	431. 933 342. 398
1677. 879	1. 303	1. 355	15. 847	150. 793	204. 297	308. 643	418. 154
1679. 183	1. 303	1. 355	15. 847	152. 351	206. 407	309.078	418. 744
1680. 486	0. 878	0. 912	15. 847	153. 655	140. 207	308. 319	281. 335
1681. 364 1682. 667	1. 303 1. 303	1. 368 1. 368	17. 624 17. 624	169. 359 170. 811	231. 601 233. 587	295. 359 295. 364	403. 908 403. 914
1683. 970	1. 025	1. 075	17. 624	172. 108	185. 048	295. 065	317. 251

1684. 995	1. 303	1. 380	19. 223	186. 089	256. 856	283. 110	390. 771
1686. 298	1. 303	1. 380	19. 223	187. 400	258. 665	282. 791	390. 332
1687. 602	1. 186	1. 257	19. 223	188. 652	237. 044	282. 205	354. 595
1688. 788 1690. 092	1. 303 1. 303	1. 392 1. 392	20. 568 20. 568	200. 339 201. 497	278. 884 280. 497	272. 457 271. 560	379. 277 378. 029
1691. 395	1. 303	1. 392	20. 568	202. 656	282. 110	270. 862	377. 057
1692. 698	0. 310	0. 331	20. 568	203. 373	67. 233	270. 101	89. 293
1693. 008	1. 303	1. 402	21. 633	212. 181	297. 494	262. 928	368. 646
1694. 311 1695. 614	1. 303 1. 252	1. 402 1. 347	21. 633 21. 633	213. 198 214. 196	298. 921 288. 518	262. 173 261. 320	367. 587 351. 994
1696. 866	1. 303	1. 414	21. 033	224. 015	316. 766	252. 527	357. 082
1698. 170	1. 303	1. 414	22. 823	224. 853	317. 950	251. 737	355. 965
1699. 473	1. 102	1. 195	22. 823	225. 626	269. 683	251. 034	300.052
1700. 575	1. 303	1. 427	24. 070	235. 313	335. 896	242. 047	345. 509
1701. 878 1703. 181	1. 303 0. 982	1. 427 1. 076	24. 070 24. 070	235. 937 236. 485	336. 787 254. 447	241. 315 240. 632	344. 463 258. 909
1704. 164	1. 303	1. 442	25. 305	245. 484	353. 905	231. 786	334. 157
1705. 467	1. 303	1. 442	25. 305	245. 873	354. 466	231. 071	333. 127
1706. 770	1. 065	1. 179	25. 305	246. 227	290. 196	230. 312	271. 439
1707. 836 1709. 139	1. 303 1. 303	1. 456 1. 456	26. 505 26. 505	254. 386 254. 525	370. 490 370. 692	221. 724 221. 015	322. 920 321. 887
1710. 443	0. 977	1. 091	26. 505	254. 646	277. 883	220. 311	240. 415
1711. 419	1. 303	1. 472	27. 675	261. 949	385. 508	211. 949	311. 923
1712. 723	1. 303	1. 472	27. 675	261. 821	385. 320	211. 232	310. 869
1714. 026 1715. 106	1. 080 1. 303	1. 219 1. 487	27. 675 28. 754	261. 704 267. 813	319. 123 398. 141	210. 574 202. 864	256. 775 301. 585
1716. 409	1. 303	1. 487	28. 754	267. 422	397. 559	202. 864	300. 536
1717. 712	1. 209	1. 379	28. 754	267. 045	368. 225	201. 533	277. 891
1718. 921	1. 303	1. 500	29. 699	271. 788	407. 799	194. 839	292. 342
1720. 225	1. 303	1.500	29. 699	271. 152	406. 845	194. 313	291. 553
1721. 528 1722. 831	1. 303 0. 215	1. 500 0. 247	29. 699 29. 699	270. 516 270. 146	405. 890 66. 771	193. 710 193. 727	290. 648 47. 882
1723. 046	1. 303	1. 518	30. 817	275. 398	417. 945	185. 656	281. 752
1724. 349	1. 303	1. 518	30. 817	274. 456	416. 515	184. 866	280. 552
1725. 653	1. 195	1. 391	30. 817	273. 554	380. 603	184. 170	256. 242
1726. 847 1728. 151	1. 303 1. 303	1. 538 1. 538	32. 042 32. 042	278. 266 276. 969	427. 849 425. 854	175. 920 175. 356	270. 487 269. 619
1729. 454	1. 073	1. 266	32. 042	275. 787	349. 241	174. 921	221. 510
1730. 528	1. 303	1. 559	33. 307	279. 798	436. 344	166. 426	259. 540
1731. 831	1. 303	1. 559	33. 307	278. 113	433. 715	165. 743	258. 475
1733. 134 1734. 102	0. 967 1. 303	1. 157 1. 582	33. 307 34. 540	276. 645 279. 628	320. 200 442. 437	165. 399 157. 090	191. 439 248. 552
1734. 102	1. 303	1. 582	34. 540	277. 544	439. 139	156. 385	247. 438
1736. 708	1. 065	1. 293	34. 540	275. 651	356. 395	156. 033	201. 739

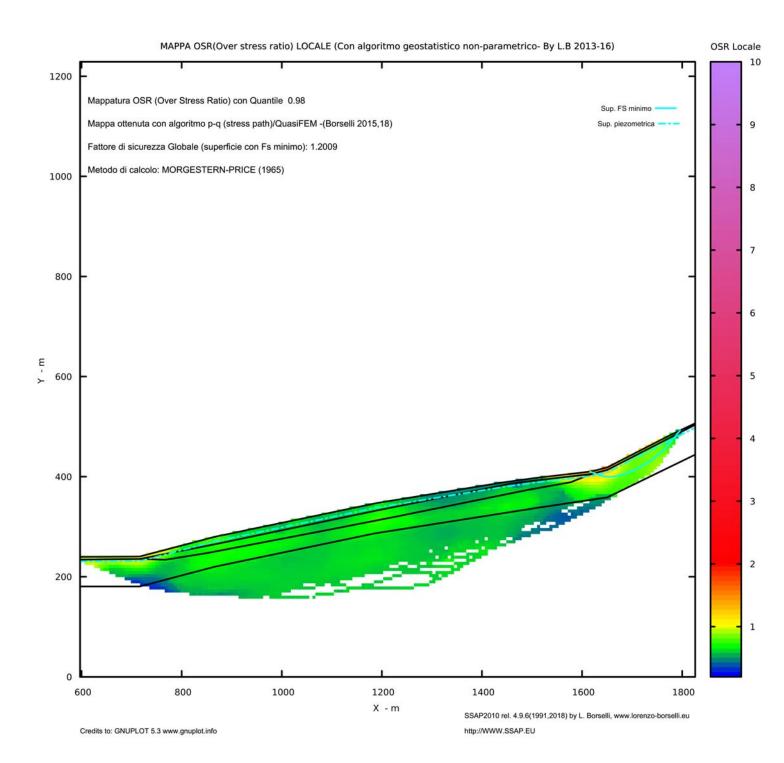
1737, 773	1. 303	1. 606	35. 750	277. 532	445. 694	148. 092	237. 825
1737.773	1. 303	1. 606	35. 750 35. 750	275. 038	441. 690	147. 415	236. 737
1740. 380	0. 987	1. 217	35. 750	272. 847	331. 990	147. 164	179. 064
1741. 367	1. 303	1. 630	36. 910	273. 724	446. 174	139. 438	227. 286
1742. 671	1. 303	1. 630	36. 910	270. 822	441. 443	138. 747	226. 159
1743. 974	1. 102	1. 379	36. 910	268. 143	369. 665	138. 468	190. 893
1745. 076	1. 303	1. 653	37. 968	267. 790	442. 718	131. 702	217. 733
1746. 380	1. 303	1. 653	37. 968	264. 501	437. 280	131. 018	216. 602
1747. 683 1748. 942	1. 259 1. 303	1. 597 1. 674	37. 968 38. 878	261. 267 259. 670	417. 281 434. 734	130. 517 125. 015	208. 454 209. 298
1746. 942	1. 303	1. 674	38. 878	256. 038	428. 654	124. 544	209. 298
1751. 549	1. 303	1. 674	38. 878	252. 406	422. 573	123. 805	207. 272
1752. 852	0. 306	0. 394	38. 878	250. 163	98. 439	124. 342	48. 929
1753. 158	1. 303	1. 715	40. 524	250.090	428.808	113. 465	194. 549
1754. 462	1. 303	1. 715	40. 524	245. 816	421. 480	112. 593	193. 054
1755. 765	1. 165	1. 533	40. 524	241. 769	370. 564	112. 487	172. 411
1756. 930	1. 303	1. 764	42. 351	239. 062	421. 598	102. 175	180. 191
1758. 233 1759. 537	1. 303 1. 022	1. 764 1. 383	42. 351 42. 351	234. 044 229. 569	412. 749 317. 406	101. 837 101. 849	179. 594 140. 818
1760. 559	1. 303	1. 363 1. 819	42. 331 44. 221	225. 402	409. 919	90. 999	165. 492
1761. 862	1. 303	1. 819	44. 221	219. 592	399. 354	90. 188	164. 018
1763. 165	0. 878	1. 224	44. 221	214. 732	262. 933	90. 568	110. 898
1764. 043	1. 303	1. 875	45. 971	209. 291	392. 466	80. 979	151. 854
1765. 346	1. 303	1. 875	45. 971	202. 715	380. 134	80. 391	150. 751
1766. 649	1. 043	1. 500	45. 971	196. 797	295. 228	80. 655	120. 996
1767. 692	1. 303	1. 951	48. 080	189. 234	369. 163	70. 483	137. 500
1768. 995	1. 303	1. 951 1. 951	48. 080	181. 705	354. 475	71. 664	139. 805
1770. 299 1771. 602	1. 303 0. 005	0. 008	48. 080 48. 080	174. 176 170. 396	339. 788 1. 343	71. 227 73. 670	138. 952 0. 581
1771. 602	1. 303	2. 013	49. 661	164. 880	331. 978	63. 705	128. 266
1772. 911	1. 303	2. 013	49. 661	156. 620	315. 346	63. 546	127. 946
1774. 214	1. 303	2. 013	49. 661	148. 359	298. 715	64. 146	129. 154
1775. 517	0. 601	0. 929	49. 661	142. 324	132. 173	67. 055	62. 272
1776. 118	1. 303	2.070	50. 980	134. 705	278. 856	60. 857	125. 983
1777. 422	0. 478	0. 760	50. 980	128. 635	97. 722	62. 603	47. 558
1777. 900	1. 303	2. 070	50. 980	122. 347	253. 274	60. 279	124. 786
1779. 203 1780. 507	1. 303 1. 303	2. 070 2. 070	50. 980 50. 980	113. 029 103. 712	233. 985 214. 697	61. 896 62. 370	128. 132 129. 114
1781. 810	0. 190	0. 302	50. 980	98. 374	29. 691	62. 920	18. 990
1782. 000	0. 644	1. 023	50. 980	95. 390	97. 594	61. 537	62. 959
1782. 644	0. 575	0. 927	51. 622	90. 365	83. 755	58. 019	53. 775
1783. 220	1. 303	2.099	51. 622	83. 780	175. 876	53. 866	113. 078
1784. 523	1. 303	2. 099	51. 622	74. 644	156. 697	48. 970	102. 800
1785. 826	1. 303	2. 099	51. 622	65. 507	137. 517	43. 675	91. 685

1787. 130	1. 303	2. 099	51. 622	56. 371	118. 338	38. 198	80. 188
1788. 433	1. 303	2. 099	51. 622	47. 235	99. 159	31. 874	66. 913
1789. 736	0. 334	0. 537	51. 622	41. 498	22. 300	27. 613	14. 839
1790. 070	1. 303	2. 099	51. 622	35. 760	75. 070	21. 381	44. 884
1791. 373	1. 303	2. 099	51. 622	26. 624	55. 891	15. 803	33. 174
1792. 676	1. 303	2. 099	51. 622	17. 488	36. 712	10. 286	21. 592
1793. 980	0. 540	0. 869	51. 622	8. 352	17. 533	4. 886	10. 257
1795. 283	0. 540	0. 869	51. 622	1. 892	1. 645	1. 104	0. 960

X(m) : Ascissa sinistra concio


SSAP 4.9.6 (2018) - Slope Stability Analysis Program Software by Dr.Geol. L.Borselli - www.lorenzo-borselli.eu SSAP/DXF generator rel. 1.5.2 (2018)


Data : 2/7/2018 Localita' : Descrizione :


[n] = N. strato o lente

#	Paran	netri Geote	cnici deali	strati# -							
							_	001		_	
	N.	phi`	C	Cu	Gamm	GammSat	sgci	GSI	mı	D	
		deg	kPa	kPa	kN/m3	kN/m3	MPa				
	1	37.00	0	0	18.00	19.00	0	0	0	0	
	2	40.00	0	0	18.00	19.00	0	0	0	0	
	3	49.00	0	0	19.00	20.00	0	0	0	0	
	4	39.00	Ο	0	19 00	20.00	0	Ο	Ο	Ο	

Modello di calcolo: Morgenstern - Price (1965)

